File size: 95,134 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""This class handle features definition in datasets and some utilities to display table type."""

import copy
import json
import re
import sys
from collections.abc import Iterable, Mapping
from collections.abc import Sequence as SequenceABC
from collections.abc import Sequence as Sequence_
from dataclasses import InitVar, dataclass, field, fields
from functools import reduce, wraps
from operator import mul
from typing import Any, Callable, ClassVar, Literal, Optional, Union

import numpy as np
import pandas as pd
import pyarrow as pa
import pyarrow.compute as pc
import pyarrow.types
from pandas.api.extensions import ExtensionArray as PandasExtensionArray
from pandas.api.extensions import ExtensionDtype as PandasExtensionDtype

from .. import config
from ..naming import camelcase_to_snakecase, snakecase_to_camelcase
from ..table import array_cast
from ..utils import experimental, logging
from ..utils.py_utils import asdict, first_non_null_value, zip_dict
from .audio import Audio
from .image import Image, encode_pil_image
from .pdf import Pdf, encode_pdfplumber_pdf
from .translation import Translation, TranslationVariableLanguages
from .video import Video


logger = logging.get_logger(__name__)


def _arrow_to_datasets_dtype(arrow_type: pa.DataType) -> str:
    """
    _arrow_to_datasets_dtype takes a pyarrow.DataType and converts it to a datasets string dtype.
    In effect, `dt == string_to_arrow(_arrow_to_datasets_dtype(dt))`
    """
    if pyarrow.types.is_null(arrow_type):
        return "null"
    elif pyarrow.types.is_boolean(arrow_type):
        return "bool"
    elif pyarrow.types.is_int8(arrow_type):
        return "int8"
    elif pyarrow.types.is_int16(arrow_type):
        return "int16"
    elif pyarrow.types.is_int32(arrow_type):
        return "int32"
    elif pyarrow.types.is_int64(arrow_type):
        return "int64"
    elif pyarrow.types.is_uint8(arrow_type):
        return "uint8"
    elif pyarrow.types.is_uint16(arrow_type):
        return "uint16"
    elif pyarrow.types.is_uint32(arrow_type):
        return "uint32"
    elif pyarrow.types.is_uint64(arrow_type):
        return "uint64"
    elif pyarrow.types.is_float16(arrow_type):
        return "float16"  # pyarrow dtype is "halffloat"
    elif pyarrow.types.is_float32(arrow_type):
        return "float32"  # pyarrow dtype is "float"
    elif pyarrow.types.is_float64(arrow_type):
        return "float64"  # pyarrow dtype is "double"
    elif pyarrow.types.is_time32(arrow_type):
        return f"time32[{pa.type_for_alias(str(arrow_type)).unit}]"
    elif pyarrow.types.is_time64(arrow_type):
        return f"time64[{pa.type_for_alias(str(arrow_type)).unit}]"
    elif pyarrow.types.is_timestamp(arrow_type):
        if arrow_type.tz is None:
            return f"timestamp[{arrow_type.unit}]"
        elif arrow_type.tz:
            return f"timestamp[{arrow_type.unit}, tz={arrow_type.tz}]"
        else:
            raise ValueError(f"Unexpected timestamp object {arrow_type}.")
    elif pyarrow.types.is_date32(arrow_type):
        return "date32"  # pyarrow dtype is "date32[day]"
    elif pyarrow.types.is_date64(arrow_type):
        return "date64"  # pyarrow dtype is "date64[ms]"
    elif pyarrow.types.is_duration(arrow_type):
        return f"duration[{arrow_type.unit}]"
    elif pyarrow.types.is_decimal128(arrow_type):
        return f"decimal128({arrow_type.precision}, {arrow_type.scale})"
    elif pyarrow.types.is_decimal256(arrow_type):
        return f"decimal256({arrow_type.precision}, {arrow_type.scale})"
    elif pyarrow.types.is_binary(arrow_type):
        return "binary"
    elif pyarrow.types.is_large_binary(arrow_type):
        return "large_binary"
    elif pyarrow.types.is_string(arrow_type):
        return "string"
    elif pyarrow.types.is_large_string(arrow_type):
        return "large_string"
    elif pyarrow.types.is_dictionary(arrow_type):
        return _arrow_to_datasets_dtype(arrow_type.value_type)
    else:
        raise ValueError(f"Arrow type {arrow_type} does not have a datasets dtype equivalent.")


def string_to_arrow(datasets_dtype: str) -> pa.DataType:
    """
    string_to_arrow takes a datasets string dtype and converts it to a pyarrow.DataType.

    In effect, `dt == string_to_arrow(_arrow_to_datasets_dtype(dt))`

    This is necessary because the datasets.Value() primitive type is constructed using a string dtype

    Value(dtype=str)

    But Features.type (via `get_nested_type()` expects to resolve Features into a pyarrow Schema,
        which means that each Value() must be able to resolve into a corresponding pyarrow.DataType, which is the
        purpose of this function.
    """

    def _dtype_error_msg(dtype, pa_dtype, examples=None, urls=None):
        msg = f"{dtype} is not a validly formatted string representation of the pyarrow {pa_dtype} type."
        if examples:
            examples = ", ".join(examples[:-1]) + " or " + examples[-1] if len(examples) > 1 else examples[0]
            msg += f"\nValid examples include: {examples}."
        if urls:
            urls = ", ".join(urls[:-1]) + " and " + urls[-1] if len(urls) > 1 else urls[0]
            msg += f"\nFor more insformation, see: {urls}."
        return msg

    if datasets_dtype in pa.__dict__:
        return pa.__dict__[datasets_dtype]()

    if (datasets_dtype + "_") in pa.__dict__:
        return pa.__dict__[datasets_dtype + "_"]()

    timestamp_matches = re.search(r"^timestamp\[(.*)\]$", datasets_dtype)
    if timestamp_matches:
        timestamp_internals = timestamp_matches.group(1)
        internals_matches = re.search(r"^(s|ms|us|ns),\s*tz=([a-zA-Z0-9/_+\-:]*)$", timestamp_internals)
        if timestamp_internals in ["s", "ms", "us", "ns"]:
            return pa.timestamp(timestamp_internals)
        elif internals_matches:
            return pa.timestamp(internals_matches.group(1), internals_matches.group(2))
        else:
            raise ValueError(
                _dtype_error_msg(
                    datasets_dtype,
                    "timestamp",
                    examples=["timestamp[us]", "timestamp[us, tz=America/New_York"],
                    urls=["https://arrow.apache.org/docs/python/generated/pyarrow.timestamp.html"],
                )
            )

    duration_matches = re.search(r"^duration\[(.*)\]$", datasets_dtype)
    if duration_matches:
        duration_internals = duration_matches.group(1)
        if duration_internals in ["s", "ms", "us", "ns"]:
            return pa.duration(duration_internals)
        else:
            raise ValueError(
                _dtype_error_msg(
                    datasets_dtype,
                    "duration",
                    examples=["duration[s]", "duration[us]"],
                    urls=["https://arrow.apache.org/docs/python/generated/pyarrow.duration.html"],
                )
            )

    time_matches = re.search(r"^time(.*)\[(.*)\]$", datasets_dtype)
    if time_matches:
        time_internals_bits = time_matches.group(1)
        if time_internals_bits == "32":
            time_internals_unit = time_matches.group(2)
            if time_internals_unit in ["s", "ms"]:
                return pa.time32(time_internals_unit)
            else:
                raise ValueError(
                    f"{time_internals_unit} is not a valid unit for the pyarrow time32 type. Supported units: s (second) and ms (millisecond)."
                )
        elif time_internals_bits == "64":
            time_internals_unit = time_matches.group(2)
            if time_internals_unit in ["us", "ns"]:
                return pa.time64(time_internals_unit)
            else:
                raise ValueError(
                    f"{time_internals_unit} is not a valid unit for the pyarrow time64 type. Supported units: us (microsecond) and ns (nanosecond)."
                )
        else:
            raise ValueError(
                _dtype_error_msg(
                    datasets_dtype,
                    "time",
                    examples=["time32[s]", "time64[us]"],
                    urls=[
                        "https://arrow.apache.org/docs/python/generated/pyarrow.time32.html",
                        "https://arrow.apache.org/docs/python/generated/pyarrow.time64.html",
                    ],
                )
            )

    decimal_matches = re.search(r"^decimal(.*)\((.*)\)$", datasets_dtype)
    if decimal_matches:
        decimal_internals_bits = decimal_matches.group(1)
        if decimal_internals_bits == "128":
            decimal_internals_precision_and_scale = re.search(r"^(\d+),\s*(-?\d+)$", decimal_matches.group(2))
            if decimal_internals_precision_and_scale:
                precision = decimal_internals_precision_and_scale.group(1)
                scale = decimal_internals_precision_and_scale.group(2)
                return pa.decimal128(int(precision), int(scale))
            else:
                raise ValueError(
                    _dtype_error_msg(
                        datasets_dtype,
                        "decimal128",
                        examples=["decimal128(10, 2)", "decimal128(4, -2)"],
                        urls=["https://arrow.apache.org/docs/python/generated/pyarrow.decimal128.html"],
                    )
                )
        elif decimal_internals_bits == "256":
            decimal_internals_precision_and_scale = re.search(r"^(\d+),\s*(-?\d+)$", decimal_matches.group(2))
            if decimal_internals_precision_and_scale:
                precision = decimal_internals_precision_and_scale.group(1)
                scale = decimal_internals_precision_and_scale.group(2)
                return pa.decimal256(int(precision), int(scale))
            else:
                raise ValueError(
                    _dtype_error_msg(
                        datasets_dtype,
                        "decimal256",
                        examples=["decimal256(30, 2)", "decimal256(38, -4)"],
                        urls=["https://arrow.apache.org/docs/python/generated/pyarrow.decimal256.html"],
                    )
                )
        else:
            raise ValueError(
                _dtype_error_msg(
                    datasets_dtype,
                    "decimal",
                    examples=["decimal128(12, 3)", "decimal256(40, 6)"],
                    urls=[
                        "https://arrow.apache.org/docs/python/generated/pyarrow.decimal128.html",
                        "https://arrow.apache.org/docs/python/generated/pyarrow.decimal256.html",
                    ],
                )
            )

    raise ValueError(
        f"Neither {datasets_dtype} nor {datasets_dtype + '_'} seems to be a pyarrow data type. "
        f"Please make sure to use a correct data type, see: "
        f"https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions"
    )


def _cast_to_python_objects(obj: Any, only_1d_for_numpy: bool, optimize_list_casting: bool) -> tuple[Any, bool]:
    """
    Cast pytorch/tensorflow/pandas objects to python numpy array/lists.
    It works recursively.

    If `optimize_list_casting` is True, to avoid iterating over possibly long lists, it first checks (recursively) if the first element that is not None or empty (if it is a sequence) has to be casted.
    If the first element needs to be casted, then all the elements of the list will be casted, otherwise they'll stay the same.
    This trick allows to cast objects that contain tokenizers outputs without iterating over every single token for example.

    Args:
        obj: the object (nested struct) to cast.
        only_1d_for_numpy (bool): whether to keep the full multi-dim tensors as multi-dim numpy arrays, or convert them to
            nested lists of 1-dimensional numpy arrays. This can be useful to keep only 1-d arrays to instantiate Arrow arrays.
            Indeed Arrow only support converting 1-dimensional array values.
        optimize_list_casting (bool): whether to optimize list casting by checking the first non-null element to see if it needs to be casted
            and if it doesn't, not checking the rest of the list elements.

    Returns:
        casted_obj: the casted object
        has_changed (bool): True if the object has been changed, False if it is identical
    """

    if config.TF_AVAILABLE and "tensorflow" in sys.modules:
        import tensorflow as tf

    if config.TORCH_AVAILABLE and "torch" in sys.modules:
        import torch

    if config.JAX_AVAILABLE and "jax" in sys.modules:
        import jax.numpy as jnp

    if config.PIL_AVAILABLE and "PIL" in sys.modules:
        import PIL.Image

    if config.PDFPLUMBER_AVAILABLE and "pdfplumber" in sys.modules:
        import pdfplumber

    if isinstance(obj, np.ndarray):
        if obj.ndim == 0:
            return obj[()], True
        elif not only_1d_for_numpy or obj.ndim == 1:
            return obj, False
        else:
            return (
                [
                    _cast_to_python_objects(
                        x, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting
                    )[0]
                    for x in obj
                ],
                True,
            )
    elif config.TORCH_AVAILABLE and "torch" in sys.modules and isinstance(obj, torch.Tensor):
        if obj.dtype == torch.bfloat16:
            return _cast_to_python_objects(
                obj.detach().to(torch.float).cpu().numpy(),
                only_1d_for_numpy=only_1d_for_numpy,
                optimize_list_casting=optimize_list_casting,
            )[0], True
        if obj.ndim == 0:
            return obj.detach().cpu().numpy()[()], True
        elif not only_1d_for_numpy or obj.ndim == 1:
            return obj.detach().cpu().numpy(), True
        else:
            return (
                [
                    _cast_to_python_objects(
                        x, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting
                    )[0]
                    for x in obj.detach().cpu().numpy()
                ],
                True,
            )
    elif config.TF_AVAILABLE and "tensorflow" in sys.modules and isinstance(obj, tf.Tensor):
        if obj.ndim == 0:
            return obj.numpy()[()], True
        elif not only_1d_for_numpy or obj.ndim == 1:
            return obj.numpy(), True
        else:
            return (
                [
                    _cast_to_python_objects(
                        x, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting
                    )[0]
                    for x in obj.numpy()
                ],
                True,
            )
    elif config.JAX_AVAILABLE and "jax" in sys.modules and isinstance(obj, jnp.ndarray):
        if obj.ndim == 0:
            return np.asarray(obj)[()], True
        elif not only_1d_for_numpy or obj.ndim == 1:
            return np.asarray(obj), True
        else:
            return (
                [
                    _cast_to_python_objects(
                        x, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting
                    )[0]
                    for x in np.asarray(obj)
                ],
                True,
            )
    elif config.PIL_AVAILABLE and "PIL" in sys.modules and isinstance(obj, PIL.Image.Image):
        return encode_pil_image(obj), True
    elif config.PDFPLUMBER_AVAILABLE and "pdfplumber" in sys.modules and isinstance(obj, pdfplumber.pdf.PDF):
        return encode_pdfplumber_pdf(obj), True
    elif isinstance(obj, pd.Series):
        return (
            _cast_to_python_objects(
                obj.tolist(), only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting
            )[0],
            True,
        )
    elif isinstance(obj, pd.DataFrame):
        return (
            {
                key: _cast_to_python_objects(
                    value, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting
                )[0]
                for key, value in obj.to_dict("series").items()
            },
            True,
        )
    elif isinstance(obj, pd.Timestamp):
        return obj.to_pydatetime(), True
    elif isinstance(obj, pd.Timedelta):
        return obj.to_pytimedelta(), True
    elif isinstance(obj, Mapping):
        has_changed = not isinstance(obj, dict)
        output = {}
        for k, v in obj.items():
            casted_v, has_changed_v = _cast_to_python_objects(
                v, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting
            )
            has_changed |= has_changed_v
            output[k] = casted_v
        return output if has_changed else obj, has_changed
    elif hasattr(obj, "__array__"):
        if np.isscalar(obj):
            return obj, False
        else:
            return (
                _cast_to_python_objects(
                    obj.__array__(), only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting
                )[0],
                True,
            )
    elif isinstance(obj, (list, tuple)):
        if len(obj) > 0:
            for first_elmt in obj:
                if _check_non_null_non_empty_recursive(first_elmt):
                    break
            casted_first_elmt, has_changed_first_elmt = _cast_to_python_objects(
                first_elmt, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting
            )
            if has_changed_first_elmt or not optimize_list_casting:
                return (
                    [
                        _cast_to_python_objects(
                            elmt, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting
                        )[0]
                        for elmt in obj
                    ],
                    True,
                )
            else:
                if isinstance(obj, (list, tuple)):
                    return obj, False
                else:
                    return list(obj), True
        else:
            return obj, False
    else:
        return obj, False


def cast_to_python_objects(obj: Any, only_1d_for_numpy=False, optimize_list_casting=True) -> Any:
    """
    Cast numpy/pytorch/tensorflow/pandas objects to python lists.
    It works recursively.

    If `optimize_list_casting` is True, To avoid iterating over possibly long lists, it first checks (recursively) if the first element that is not None or empty (if it is a sequence) has to be casted.
    If the first element needs to be casted, then all the elements of the list will be casted, otherwise they'll stay the same.
    This trick allows to cast objects that contain tokenizers outputs without iterating over every single token for example.

    Args:
        obj: the object (nested struct) to cast
        only_1d_for_numpy (bool, default ``False``): whether to keep the full multi-dim tensors as multi-dim numpy arrays, or convert them to
            nested lists of 1-dimensional numpy arrays. This can be useful to keep only 1-d arrays to instantiate Arrow arrays.
            Indeed Arrow only support converting 1-dimensional array values.
        optimize_list_casting (bool, default ``True``): whether to optimize list casting by checking the first non-null element to see if it needs to be casted
            and if it doesn't, not checking the rest of the list elements.

    Returns:
        casted_obj: the casted object
    """
    return _cast_to_python_objects(
        obj, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting
    )[0]


@dataclass
class Value:
    """
    Scalar feature value of a particular data type.

    The possible dtypes of `Value` are as follows:
    - `null`
    - `bool`
    - `int8`
    - `int16`
    - `int32`
    - `int64`
    - `uint8`
    - `uint16`
    - `uint32`
    - `uint64`
    - `float16`
    - `float32` (alias float)
    - `float64` (alias double)
    - `time32[(s|ms)]`
    - `time64[(us|ns)]`
    - `timestamp[(s|ms|us|ns)]`
    - `timestamp[(s|ms|us|ns), tz=(tzstring)]`
    - `date32`
    - `date64`
    - `duration[(s|ms|us|ns)]`
    - `decimal128(precision, scale)`
    - `decimal256(precision, scale)`
    - `binary`
    - `large_binary`
    - `string`
    - `large_string`

    Args:
        dtype (`str`):
            Name of the data type.

    Example:

    ```py
    >>> from datasets import Features
    >>> features = Features({'stars': Value(dtype='int32')})
    >>> features
    {'stars': Value(dtype='int32', id=None)}
    ```
    """

    dtype: str
    id: Optional[str] = None
    # Automatically constructed
    pa_type: ClassVar[Any] = None
    _type: str = field(default="Value", init=False, repr=False)

    def __post_init__(self):
        if self.dtype == "double":  # fix inferred type
            self.dtype = "float64"
        if self.dtype == "float":  # fix inferred type
            self.dtype = "float32"
        self.pa_type = string_to_arrow(self.dtype)

    def __call__(self):
        return self.pa_type

    def encode_example(self, value):
        if pa.types.is_boolean(self.pa_type):
            return bool(value)
        elif pa.types.is_integer(self.pa_type):
            return int(value)
        elif pa.types.is_floating(self.pa_type):
            return float(value)
        elif pa.types.is_string(self.pa_type):
            return str(value)
        else:
            return value


class _ArrayXD:
    def __post_init__(self):
        self.shape = tuple(self.shape)

    def __call__(self):
        pa_type = globals()[self.__class__.__name__ + "ExtensionType"](self.shape, self.dtype)
        return pa_type

    def encode_example(self, value):
        return value


@dataclass
class Array2D(_ArrayXD):
    """Create a two-dimensional array.

    Args:
        shape (`tuple`):
            Size of each dimension.
        dtype (`str`):
            Name of the data type.

    Example:

    ```py
    >>> from datasets import Features
    >>> features = Features({'x': Array2D(shape=(1, 3), dtype='int32')})
    ```
    """

    shape: tuple
    dtype: str
    id: Optional[str] = None
    # Automatically constructed
    _type: str = field(default="Array2D", init=False, repr=False)


@dataclass
class Array3D(_ArrayXD):
    """Create a three-dimensional array.

    Args:
        shape (`tuple`):
            Size of each dimension.
        dtype (`str`):
            Name of the data type.

    Example:

    ```py
    >>> from datasets import Features
    >>> features = Features({'x': Array3D(shape=(1, 2, 3), dtype='int32')})
    ```
    """

    shape: tuple
    dtype: str
    id: Optional[str] = None
    # Automatically constructed
    _type: str = field(default="Array3D", init=False, repr=False)


@dataclass
class Array4D(_ArrayXD):
    """Create a four-dimensional array.

    Args:
        shape (`tuple`):
            Size of each dimension.
        dtype (`str`):
            Name of the data type.

    Example:

    ```py
    >>> from datasets import Features
    >>> features = Features({'x': Array4D(shape=(1, 2, 2, 3), dtype='int32')})
    ```
    """

    shape: tuple
    dtype: str
    id: Optional[str] = None
    # Automatically constructed
    _type: str = field(default="Array4D", init=False, repr=False)


@dataclass
class Array5D(_ArrayXD):
    """Create a five-dimensional array.

    Args:
        shape (`tuple`):
            Size of each dimension.
        dtype (`str`):
            Name of the data type.

    Example:

    ```py
    >>> from datasets import Features
    >>> features = Features({'x': Array5D(shape=(1, 2, 2, 3, 3), dtype='int32')})
    ```
    """

    shape: tuple
    dtype: str
    id: Optional[str] = None
    # Automatically constructed
    _type: str = field(default="Array5D", init=False, repr=False)


class _ArrayXDExtensionType(pa.ExtensionType):
    ndims: Optional[int] = None

    def __init__(self, shape: tuple, dtype: str):
        if self.ndims is None or self.ndims <= 1:
            raise ValueError("You must instantiate an array type with a value for dim that is > 1")
        if len(shape) != self.ndims:
            raise ValueError(f"shape={shape} and ndims={self.ndims} don't match")
        for dim in range(1, self.ndims):
            if shape[dim] is None:
                raise ValueError(f"Support only dynamic size on first dimension. Got: {shape}")
        self.shape = tuple(shape)
        self.value_type = dtype
        self.storage_dtype = self._generate_dtype(self.value_type)
        pa.ExtensionType.__init__(self, self.storage_dtype, f"{self.__class__.__module__}.{self.__class__.__name__}")

    def __arrow_ext_serialize__(self):
        return json.dumps((self.shape, self.value_type)).encode()

    @classmethod
    def __arrow_ext_deserialize__(cls, storage_type, serialized):
        args = json.loads(serialized)
        return cls(*args)

    # This was added to pa.ExtensionType in pyarrow >= 13.0.0
    def __reduce__(self):
        return self.__arrow_ext_deserialize__, (self.storage_type, self.__arrow_ext_serialize__())

    def __hash__(self):
        return hash((self.__class__, self.shape, self.value_type))

    def __arrow_ext_class__(self):
        return ArrayExtensionArray

    def _generate_dtype(self, dtype):
        dtype = string_to_arrow(dtype)
        for d in reversed(self.shape):
            dtype = pa.list_(dtype)
            # Don't specify the size of the list, since fixed length list arrays have issues
            # being validated after slicing in pyarrow 0.17.1
        return dtype

    def to_pandas_dtype(self):
        return PandasArrayExtensionDtype(self.value_type)


class Array2DExtensionType(_ArrayXDExtensionType):
    ndims = 2


class Array3DExtensionType(_ArrayXDExtensionType):
    ndims = 3


class Array4DExtensionType(_ArrayXDExtensionType):
    ndims = 4


class Array5DExtensionType(_ArrayXDExtensionType):
    ndims = 5


# Register the extension types for deserialization
pa.register_extension_type(Array2DExtensionType((1, 2), "int64"))
pa.register_extension_type(Array3DExtensionType((1, 2, 3), "int64"))
pa.register_extension_type(Array4DExtensionType((1, 2, 3, 4), "int64"))
pa.register_extension_type(Array5DExtensionType((1, 2, 3, 4, 5), "int64"))


def _is_zero_copy_only(pa_type: pa.DataType, unnest: bool = False) -> bool:
    """
    When converting a pyarrow array to a numpy array, we must know whether this could be done in zero-copy or not.
    This function returns the value of the ``zero_copy_only`` parameter to pass to ``.to_numpy()``, given the type of the pyarrow array.

    # zero copy is available for all primitive types except booleans and temporal types (date, time, timestamp or duration)
    # primitive types are types for which the physical representation in arrow and in numpy
    # https://github.com/wesm/arrow/blob/c07b9b48cf3e0bbbab493992a492ae47e5b04cad/python/pyarrow/types.pxi#L821
    # see https://arrow.apache.org/docs/python/generated/pyarrow.Array.html#pyarrow.Array.to_numpy
    # and https://issues.apache.org/jira/browse/ARROW-2871?jql=text%20~%20%22boolean%20to_numpy%22
    """

    def _unnest_pa_type(pa_type: pa.DataType) -> pa.DataType:
        if pa.types.is_list(pa_type):
            return _unnest_pa_type(pa_type.value_type)
        return pa_type

    if unnest:
        pa_type = _unnest_pa_type(pa_type)
    return pa.types.is_primitive(pa_type) and not (pa.types.is_boolean(pa_type) or pa.types.is_temporal(pa_type))


class ArrayExtensionArray(pa.ExtensionArray):
    def __array__(self):
        zero_copy_only = _is_zero_copy_only(self.storage.type, unnest=True)
        return self.to_numpy(zero_copy_only=zero_copy_only)

    def __getitem__(self, i):
        return self.storage[i]

    def to_numpy(self, zero_copy_only=True):
        storage: pa.ListArray = self.storage
        null_mask = storage.is_null().to_numpy(zero_copy_only=False)

        if self.type.shape[0] is not None:
            size = 1
            null_indices = np.arange(len(storage))[null_mask] - np.arange(np.sum(null_mask))

            for i in range(self.type.ndims):
                size *= self.type.shape[i]
                storage = storage.flatten()
            numpy_arr = storage.to_numpy(zero_copy_only=zero_copy_only)
            numpy_arr = numpy_arr.reshape(len(self) - len(null_indices), *self.type.shape)

            if len(null_indices):
                numpy_arr = np.insert(numpy_arr.astype(np.float64), null_indices, np.nan, axis=0)

        else:
            shape = self.type.shape
            ndims = self.type.ndims
            arrays = []
            first_dim_offsets = np.array([off.as_py() for off in storage.offsets])
            for i, is_null in enumerate(null_mask):
                if is_null:
                    arrays.append(np.nan)
                else:
                    storage_el = storage[i : i + 1]
                    first_dim = first_dim_offsets[i + 1] - first_dim_offsets[i]
                    # flatten storage
                    for _ in range(ndims):
                        storage_el = storage_el.flatten()

                    numpy_arr = storage_el.to_numpy(zero_copy_only=zero_copy_only)
                    arrays.append(numpy_arr.reshape(first_dim, *shape[1:]))

            if len(np.unique(np.diff(first_dim_offsets))) > 1:
                # ragged
                numpy_arr = np.empty(len(arrays), dtype=object)
                numpy_arr[:] = arrays
            else:
                numpy_arr = np.array(arrays)

        return numpy_arr

    def to_pylist(self, maps_as_pydicts: Optional[Literal["lossy", "strict"]] = None):
        zero_copy_only = _is_zero_copy_only(self.storage.type, unnest=True)
        numpy_arr = self.to_numpy(zero_copy_only=zero_copy_only)
        if self.type.shape[0] is None and numpy_arr.dtype == object:
            return [arr.tolist() for arr in numpy_arr.tolist()]
        else:
            return numpy_arr.tolist()


class PandasArrayExtensionDtype(PandasExtensionDtype):
    _metadata = "value_type"

    def __init__(self, value_type: Union["PandasArrayExtensionDtype", np.dtype]):
        self._value_type = value_type

    def __from_arrow__(self, array: Union[pa.Array, pa.ChunkedArray]):
        if isinstance(array, pa.ChunkedArray):
            array = array.type.wrap_array(pa.concat_arrays([chunk.storage for chunk in array.chunks]))
        zero_copy_only = _is_zero_copy_only(array.storage.type, unnest=True)
        numpy_arr = array.to_numpy(zero_copy_only=zero_copy_only)
        return PandasArrayExtensionArray(numpy_arr)

    @classmethod
    def construct_array_type(cls):
        return PandasArrayExtensionArray

    @property
    def type(self) -> type:
        return np.ndarray

    @property
    def kind(self) -> str:
        return "O"

    @property
    def name(self) -> str:
        return f"array[{self.value_type}]"

    @property
    def value_type(self) -> np.dtype:
        return self._value_type


class PandasArrayExtensionArray(PandasExtensionArray):
    def __init__(self, data: np.ndarray, copy: bool = False):
        self._data = data if not copy else np.array(data)
        self._dtype = PandasArrayExtensionDtype(data.dtype)

    def __array__(self, dtype=None):
        """
        Convert to NumPy Array.
        Note that Pandas expects a 1D array when dtype is set to object.
        But for other dtypes, the returned shape is the same as the one of ``data``.

        More info about pandas 1D requirement for PandasExtensionArray here:
        https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.api.extensions.ExtensionArray.html#pandas.api.extensions.ExtensionArray

        """
        if dtype == np.dtype(object):
            out = np.empty(len(self._data), dtype=object)
            for i in range(len(self._data)):
                out[i] = self._data[i]
            return out
        if dtype is None:
            return self._data
        else:
            return self._data.astype(dtype)

    def copy(self, deep: bool = False) -> "PandasArrayExtensionArray":
        return PandasArrayExtensionArray(self._data, copy=True)

    @classmethod
    def _from_sequence(
        cls, scalars, dtype: Optional[PandasArrayExtensionDtype] = None, copy: bool = False
    ) -> "PandasArrayExtensionArray":
        if len(scalars) > 1 and all(
            isinstance(x, np.ndarray) and x.shape == scalars[0].shape and x.dtype == scalars[0].dtype for x in scalars
        ):
            data = np.array(scalars, dtype=dtype if dtype is None else dtype.value_type, copy=copy)
        else:
            data = np.empty(len(scalars), dtype=object)
            data[:] = scalars
        return cls(data, copy=copy)

    @classmethod
    def _concat_same_type(cls, to_concat: Sequence_["PandasArrayExtensionArray"]) -> "PandasArrayExtensionArray":
        if len(to_concat) > 1 and all(
            va._data.shape == to_concat[0]._data.shape and va._data.dtype == to_concat[0]._data.dtype
            for va in to_concat
        ):
            data = np.vstack([va._data for va in to_concat])
        else:
            data = np.empty(len(to_concat), dtype=object)
            data[:] = [va._data for va in to_concat]
        return cls(data, copy=False)

    @property
    def dtype(self) -> PandasArrayExtensionDtype:
        return self._dtype

    @property
    def nbytes(self) -> int:
        return self._data.nbytes

    def isna(self) -> np.ndarray:
        return np.array([pd.isna(arr).any() for arr in self._data])

    def __setitem__(self, key: Union[int, slice, np.ndarray], value: Any) -> None:
        raise NotImplementedError()

    def __getitem__(self, item: Union[int, slice, np.ndarray]) -> Union[np.ndarray, "PandasArrayExtensionArray"]:
        if isinstance(item, int):
            return self._data[item]
        return PandasArrayExtensionArray(self._data[item], copy=False)

    def take(
        self, indices: Sequence_[int], allow_fill: bool = False, fill_value: bool = None
    ) -> "PandasArrayExtensionArray":
        indices: np.ndarray = np.asarray(indices, dtype=int)
        if allow_fill:
            fill_value = (
                self.dtype.na_value if fill_value is None else np.asarray(fill_value, dtype=self.dtype.value_type)
            )
            mask = indices == -1
            if (indices < -1).any():
                raise ValueError("Invalid value in `indices`, must be all >= -1 for `allow_fill` is True")
            elif len(self) > 0:
                pass
            elif not np.all(mask):
                raise IndexError("Invalid take for empty PandasArrayExtensionArray, must be all -1.")
            else:
                data = np.array([fill_value] * len(indices), dtype=self.dtype.value_type)
                return PandasArrayExtensionArray(data, copy=False)
        took = self._data.take(indices, axis=0)
        if allow_fill and mask.any():
            took[mask] = [fill_value] * np.sum(mask)
        return PandasArrayExtensionArray(took, copy=False)

    def __len__(self) -> int:
        return len(self._data)

    def __eq__(self, other) -> np.ndarray:
        if not isinstance(other, PandasArrayExtensionArray):
            raise NotImplementedError(f"Invalid type to compare to: {type(other)}")
        return (self._data == other._data).all()


def pandas_types_mapper(dtype):
    if isinstance(dtype, _ArrayXDExtensionType):
        return PandasArrayExtensionDtype(dtype.value_type)


@dataclass
class ClassLabel:
    """Feature type for integer class labels.

    There are 3 ways to define a `ClassLabel`, which correspond to the 3 arguments:

     * `num_classes`: Create 0 to (num_classes-1) labels.
     * `names`: List of label strings.
     * `names_file`: File containing the list of labels.

    Under the hood the labels are stored as integers.
    You can use negative integers to represent unknown/missing labels.

    Args:
        num_classes (`int`, *optional*):
            Number of classes. All labels must be < `num_classes`.
        names (`list` of `str`, *optional*):
            String names for the integer classes.
            The order in which the names are provided is kept.
        names_file (`str`, *optional*):
            Path to a file with names for the integer classes, one per line.

    Example:

    ```py
    >>> from datasets import Features, ClassLabel
    >>> features = Features({'label': ClassLabel(num_classes=3, names=['bad', 'ok', 'good'])})
    >>> features
    {'label': ClassLabel(names=['bad', 'ok', 'good'], id=None)}
    ```
    """

    num_classes: InitVar[Optional[int]] = None  # Pseudo-field: ignored by asdict/fields when converting to/from dict
    names: list[str] = None
    names_file: InitVar[Optional[str]] = None  # Pseudo-field: ignored by asdict/fields when converting to/from dict
    id: Optional[str] = None
    # Automatically constructed
    dtype: ClassVar[str] = "int64"
    pa_type: ClassVar[Any] = pa.int64()
    _str2int: ClassVar[dict[str, int]] = None
    _int2str: ClassVar[dict[int, int]] = None
    _type: str = field(default="ClassLabel", init=False, repr=False)

    def __post_init__(self, num_classes, names_file):
        self.num_classes = num_classes
        self.names_file = names_file
        if self.names_file is not None and self.names is not None:
            raise ValueError("Please provide either names or names_file but not both.")
        # Set self.names
        if self.names is None:
            if self.names_file is not None:
                self.names = self._load_names_from_file(self.names_file)
            elif self.num_classes is not None:
                self.names = [str(i) for i in range(self.num_classes)]
            else:
                raise ValueError("Please provide either num_classes, names or names_file.")
        elif not isinstance(self.names, SequenceABC):
            raise TypeError(f"Please provide names as a list, is {type(self.names)}")
        # Set self.num_classes
        if self.num_classes is None:
            self.num_classes = len(self.names)
        elif self.num_classes != len(self.names):
            raise ValueError(
                "ClassLabel number of names do not match the defined num_classes. "
                f"Got {len(self.names)} names VS {self.num_classes} num_classes"
            )
        # Prepare mappings
        self._int2str = [str(name) for name in self.names]
        self._str2int = {name: i for i, name in enumerate(self._int2str)}
        if len(self._int2str) != len(self._str2int):
            raise ValueError("Some label names are duplicated. Each label name should be unique.")

    def __call__(self):
        return self.pa_type

    def str2int(self, values: Union[str, Iterable]) -> Union[int, Iterable]:
        """Conversion class name `string` => `integer`.

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", split="train")
        >>> ds.features["label"].str2int('neg')
        0
        ```
        """
        if not isinstance(values, str) and not isinstance(values, Iterable):
            raise ValueError(
                f"Values {values} should be a string or an Iterable (list, numpy array, pytorch, tensorflow tensors)"
            )
        return_list = True
        if isinstance(values, str):
            values = [values]
            return_list = False

        output = [self._strval2int(value) for value in values]
        return output if return_list else output[0]

    def _strval2int(self, value: str) -> int:
        failed_parse = False
        value = str(value)
        # first attempt - raw string value
        int_value = self._str2int.get(value)
        if int_value is None:
            # second attempt - strip whitespace
            int_value = self._str2int.get(value.strip())
            if int_value is None:
                # third attempt - convert str to int
                try:
                    int_value = int(value)
                except ValueError:
                    failed_parse = True
                else:
                    if int_value < -1 or int_value >= self.num_classes:
                        failed_parse = True
        if failed_parse:
            raise ValueError(f"Invalid string class label {value}")
        return int_value

    def int2str(self, values: Union[int, Iterable]) -> Union[str, Iterable]:
        """Conversion `integer` => class name `string`.

        Regarding unknown/missing labels: passing negative integers raises `ValueError`.

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", split="train")
        >>> ds.features["label"].int2str(0)
        'neg'
        ```
        """
        if not isinstance(values, int) and not isinstance(values, Iterable):
            raise ValueError(
                f"Values {values} should be an integer or an Iterable (list, numpy array, pytorch, tensorflow tensors)"
            )
        return_list = True
        if isinstance(values, int):
            values = [values]
            return_list = False

        for v in values:
            if not 0 <= v < self.num_classes:
                raise ValueError(f"Invalid integer class label {v:d}")

        output = [self._int2str[int(v)] for v in values]
        return output if return_list else output[0]

    def encode_example(self, example_data):
        if self.num_classes is None:
            raise ValueError(
                "Trying to use ClassLabel feature with undefined number of class. "
                "Please set ClassLabel.names or num_classes."
            )

        # If a string is given, convert to associated integer
        if isinstance(example_data, str):
            example_data = self.str2int(example_data)

        # Allowing -1 to mean no label.
        if not -1 <= example_data < self.num_classes:
            raise ValueError(f"Class label {example_data:d} greater than configured num_classes {self.num_classes}")
        return example_data

    def cast_storage(self, storage: Union[pa.StringArray, pa.IntegerArray]) -> pa.Int64Array:
        """Cast an Arrow array to the `ClassLabel` arrow storage type.
        The Arrow types that can be converted to the `ClassLabel` pyarrow storage type are:

        - `pa.string()`
        - `pa.int()`

        Args:
            storage (`Union[pa.StringArray, pa.IntegerArray]`):
                PyArrow array to cast.

        Returns:
            `pa.Int64Array`: Array in the `ClassLabel` arrow storage type.
        """
        if isinstance(storage, pa.IntegerArray) and len(storage) > 0:
            min_max = pc.min_max(storage).as_py()
            if min_max["max"] is not None and min_max["max"] >= self.num_classes:
                raise ValueError(
                    f"Class label {min_max['max']} greater than configured num_classes {self.num_classes}"
                )
        elif isinstance(storage, pa.StringArray):
            storage = pa.array(
                [self._strval2int(label) if label is not None else None for label in storage.to_pylist()]
            )
        return array_cast(storage, self.pa_type)

    @staticmethod
    def _load_names_from_file(names_filepath):
        with open(names_filepath, encoding="utf-8") as f:
            return [name.strip() for name in f.read().split("\n") if name.strip()]  # Filter empty names


@dataclass
class Sequence:
    """Construct a list of feature from a single type or a dict of types.
    Mostly here for compatiblity with tfds.

    Args:
        feature ([`FeatureType`]):
            A list of features of a single type or a dictionary of types.
        length (`int`):
            Length of the sequence.

    Example:

    ```py
    >>> from datasets import Features, Sequence, Value, ClassLabel
    >>> features = Features({'post': Sequence(feature={'text': Value(dtype='string'), 'upvotes': Value(dtype='int32'), 'label': ClassLabel(num_classes=2, names=['hot', 'cold'])})})
    >>> features
    {'post': Sequence(feature={'text': Value(dtype='string', id=None), 'upvotes': Value(dtype='int32', id=None), 'label': ClassLabel(names=['hot', 'cold'], id=None)}, length=-1, id=None)}
    ```
    """

    feature: Any
    length: int = -1
    id: Optional[str] = None
    # Automatically constructed
    dtype: ClassVar[str] = "list"
    pa_type: ClassVar[Any] = None
    _type: str = field(default="Sequence", init=False, repr=False)


@dataclass
class LargeList:
    """Feature type for large list data composed of child feature data type.

    It is backed by `pyarrow.LargeListType`, which is like `pyarrow.ListType` but with 64-bit rather than 32-bit offsets.

    Args:
        feature ([`FeatureType`]):
            Child feature data type of each item within the large list.
    """

    feature: Any
    id: Optional[str] = None
    # Automatically constructed
    pa_type: ClassVar[Any] = None
    _type: str = field(default="LargeList", init=False, repr=False)


FeatureType = Union[
    dict,
    list,
    tuple,
    Value,
    ClassLabel,
    Translation,
    TranslationVariableLanguages,
    LargeList,
    Sequence,
    Array2D,
    Array3D,
    Array4D,
    Array5D,
    Audio,
    Image,
    Video,
    Pdf,
]


def _check_non_null_non_empty_recursive(obj, schema: Optional[FeatureType] = None) -> bool:
    """
    Check if the object is not None.
    If the object is a list or a tuple, recursively check the first element of the sequence and stop if at any point the first element is not a sequence or is an empty sequence.
    """
    if obj is None:
        return False
    elif isinstance(obj, (list, tuple)) and (schema is None or isinstance(schema, (list, tuple, LargeList, Sequence))):
        if len(obj) > 0:
            if schema is None:
                pass
            elif isinstance(schema, (list, tuple)):
                schema = schema[0]
            else:
                schema = schema.feature
            return _check_non_null_non_empty_recursive(obj[0], schema)
        else:
            return False
    else:
        return True


def get_nested_type(schema: FeatureType) -> pa.DataType:
    """
    get_nested_type() converts a datasets.FeatureType into a pyarrow.DataType, and acts as the inverse of
        generate_from_arrow_type().

    It performs double-duty as the implementation of Features.type and handles the conversion of
        datasets.Feature->pa.struct
    """
    # Nested structures: we allow dict, list/tuples, sequences
    if isinstance(schema, Features):
        return pa.struct(
            {key: get_nested_type(schema[key]) for key in schema}
        )  # Features is subclass of dict, and dict order is deterministic since Python 3.6
    elif isinstance(schema, dict):
        return pa.struct(
            {key: get_nested_type(schema[key]) for key in schema}
        )  # however don't sort on struct types since the order matters
    elif isinstance(schema, (list, tuple)):
        if len(schema) != 1:
            raise ValueError("When defining list feature, you should just provide one example of the inner type")
        value_type = get_nested_type(schema[0])
        return pa.list_(value_type)
    elif isinstance(schema, LargeList):
        value_type = get_nested_type(schema.feature)
        return pa.large_list(value_type)
    elif isinstance(schema, Sequence):
        value_type = get_nested_type(schema.feature)
        # We allow to reverse list of dict => dict of list for compatibility with tfds
        if isinstance(schema.feature, dict):
            data_type = pa.struct({f.name: pa.list_(f.type, schema.length) for f in value_type})
        else:
            data_type = pa.list_(value_type, schema.length)
        return data_type

    # Other objects are callable which returns their data type (ClassLabel, Array2D, Translation, Arrow datatype creation methods)
    return schema()


def encode_nested_example(schema, obj, level=0):
    """Encode a nested example.
    This is used since some features (in particular ClassLabel) have some logic during encoding.

    To avoid iterating over possibly long lists, it first checks (recursively) if the first element that is not None or empty (if it is a sequence) has to be encoded.
    If the first element needs to be encoded, then all the elements of the list will be encoded, otherwise they'll stay the same.
    """
    # Nested structures: we allow dict, list/tuples, sequences
    if isinstance(schema, dict):
        if level == 0 and obj is None:
            raise ValueError("Got None but expected a dictionary instead")
        return (
            {k: encode_nested_example(schema[k], obj.get(k), level=level + 1) for k in schema}
            if obj is not None
            else None
        )

    elif isinstance(schema, (list, tuple)):
        sub_schema = schema[0]
        if obj is None:
            return None
        elif isinstance(obj, np.ndarray):
            return encode_nested_example(schema, obj.tolist())
        else:
            if len(obj) > 0:
                for first_elmt in obj:
                    if _check_non_null_non_empty_recursive(first_elmt, sub_schema):
                        break
                if encode_nested_example(sub_schema, first_elmt, level=level + 1) != first_elmt:
                    return [encode_nested_example(sub_schema, o, level=level + 1) for o in obj]
            return list(obj)
    elif isinstance(schema, LargeList):
        if obj is None:
            return None
        else:
            if len(obj) > 0:
                sub_schema = schema.feature
                for first_elmt in obj:
                    if _check_non_null_non_empty_recursive(first_elmt, sub_schema):
                        break
                if encode_nested_example(sub_schema, first_elmt, level=level + 1) != first_elmt:
                    return [encode_nested_example(sub_schema, o, level=level + 1) for o in obj]
            return list(obj)
    elif isinstance(schema, Sequence):
        if obj is None:
            return None
        # We allow to reverse list of dict => dict of list for compatibility with tfds
        if isinstance(schema.feature, dict):
            # dict of list to fill
            list_dict = {}
            if isinstance(obj, (list, tuple)):
                # obj is a list of dict
                for k in schema.feature:
                    list_dict[k] = [encode_nested_example(schema.feature[k], o.get(k), level=level + 1) for o in obj]
                return list_dict
            else:
                # obj is a single dict
                for k in schema.feature:
                    list_dict[k] = (
                        [encode_nested_example(schema.feature[k], o, level=level + 1) for o in obj[k]]
                        if k in obj
                        else None
                    )
                return list_dict
        # schema.feature is not a dict
        if isinstance(obj, str):  # don't interpret a string as a list
            raise ValueError(f"Got a string but expected a list instead: '{obj}'")
        else:
            if len(obj) > 0:
                for first_elmt in obj:
                    if _check_non_null_non_empty_recursive(first_elmt, schema.feature):
                        break
                # be careful when comparing tensors here
                if (
                    not (isinstance(first_elmt, list) or np.isscalar(first_elmt))
                    or encode_nested_example(schema.feature, first_elmt, level=level + 1) != first_elmt
                ):
                    return [encode_nested_example(schema.feature, o, level=level + 1) for o in obj]
            return list(obj)
    # Object with special encoding:
    # ClassLabel will convert from string to int, TranslationVariableLanguages does some checks
    elif hasattr(schema, "encode_example"):
        return schema.encode_example(obj) if obj is not None else None
    # Other object should be directly convertible to a native Arrow type (like Translation and Translation)
    return obj


def decode_nested_example(schema, obj, token_per_repo_id: Optional[dict[str, Union[str, bool, None]]] = None):
    """Decode a nested example.
    This is used since some features (in particular Audio and Image) have some logic during decoding.

    To avoid iterating over possibly long lists, it first checks (recursively) if the first element that is not None or empty (if it is a sequence) has to be decoded.
    If the first element needs to be decoded, then all the elements of the list will be decoded, otherwise they'll stay the same.
    """
    # Nested structures: we allow dict, list/tuples, sequences
    if isinstance(schema, dict):
        return (
            {k: decode_nested_example(sub_schema, sub_obj) for k, (sub_schema, sub_obj) in zip_dict(schema, obj)}
            if obj is not None
            else None
        )
    elif isinstance(schema, (list, tuple)):
        sub_schema = schema[0]
        if obj is None:
            return None
        else:
            if len(obj) > 0:
                for first_elmt in obj:
                    if _check_non_null_non_empty_recursive(first_elmt, sub_schema):
                        break
                if decode_nested_example(sub_schema, first_elmt) != first_elmt:
                    return [decode_nested_example(sub_schema, o) for o in obj]
            return list(obj)
    elif isinstance(schema, LargeList):
        if obj is None:
            return None
        else:
            sub_schema = schema.feature
            if len(obj) > 0:
                for first_elmt in obj:
                    if _check_non_null_non_empty_recursive(first_elmt, sub_schema):
                        break
                if decode_nested_example(sub_schema, first_elmt) != first_elmt:
                    return [decode_nested_example(sub_schema, o) for o in obj]
            return list(obj)
    elif isinstance(schema, Sequence):
        # We allow to reverse list of dict => dict of list for compatibility with tfds
        if isinstance(schema.feature, dict):
            return {k: decode_nested_example([schema.feature[k]], obj[k]) for k in schema.feature}
        else:
            return decode_nested_example([schema.feature], obj)
    # Object with special decoding:
    elif hasattr(schema, "decode_example") and getattr(schema, "decode", True):
        # we pass the token to read and decode files from private repositories in streaming mode
        return schema.decode_example(obj, token_per_repo_id=token_per_repo_id) if obj is not None else None
    return obj


_FEATURE_TYPES: dict[str, FeatureType] = {
    Value.__name__: Value,
    ClassLabel.__name__: ClassLabel,
    Translation.__name__: Translation,
    TranslationVariableLanguages.__name__: TranslationVariableLanguages,
    LargeList.__name__: LargeList,
    Sequence.__name__: Sequence,
    Array2D.__name__: Array2D,
    Array3D.__name__: Array3D,
    Array4D.__name__: Array4D,
    Array5D.__name__: Array5D,
    Audio.__name__: Audio,
    Image.__name__: Image,
    Video.__name__: Video,
    Pdf.__name__: Pdf,
}


@experimental
def register_feature(
    feature_cls: type,
    feature_type: str,
):
    """
    Register a Feature object using a name and class.
    This function must be used on a Feature class.
    """
    if feature_type in _FEATURE_TYPES:
        logger.warning(
            f"Overwriting feature type '{feature_type}' ({_FEATURE_TYPES[feature_type].__name__} -> {feature_cls.__name__})"
        )
    _FEATURE_TYPES[feature_type] = feature_cls


def generate_from_dict(obj: Any):
    """Regenerate the nested feature object from a deserialized dict.
    We use the '_type' fields to get the dataclass name to load.

    generate_from_dict is the recursive helper for Features.from_dict, and allows for a convenient constructor syntax
    to define features from deserialized JSON dictionaries. This function is used in particular when deserializing
    a :class:`DatasetInfo` that was dumped to a JSON object. This acts as an analogue to
    :meth:`Features.from_arrow_schema` and handles the recursive field-by-field instantiation, but doesn't require any
    mapping to/from pyarrow, except for the fact that it takes advantage of the mapping of pyarrow primitive dtypes
    that :class:`Value` automatically performs.
    """
    # Nested structures: we allow dict, list/tuples, sequences
    if isinstance(obj, list):
        return [generate_from_dict(value) for value in obj]
    # Otherwise we have a dict or a dataclass
    if "_type" not in obj or isinstance(obj["_type"], dict):
        return {key: generate_from_dict(value) for key, value in obj.items()}
    obj = dict(obj)
    _type = obj.pop("_type")
    class_type = _FEATURE_TYPES.get(_type, None) or globals().get(_type, None)

    if class_type is None:
        raise ValueError(f"Feature type '{_type}' not found. Available feature types: {list(_FEATURE_TYPES.keys())}")

    if class_type == LargeList:
        feature = obj.pop("feature")
        return LargeList(feature=generate_from_dict(feature), **obj)
    if class_type == Sequence:
        feature = obj.pop("feature")
        return Sequence(feature=generate_from_dict(feature), **obj)

    field_names = {f.name for f in fields(class_type)}
    return class_type(**{k: v for k, v in obj.items() if k in field_names})


def generate_from_arrow_type(pa_type: pa.DataType) -> FeatureType:
    """
    generate_from_arrow_type accepts an arrow DataType and returns a datasets FeatureType to be used as the type for
        a single field.

    This is the high-level arrow->datasets type conversion and is inverted by get_nested_type().

    This operates at the individual *field* level, whereas Features.from_arrow_schema() operates at the
        full schema level and holds the methods that represent the bijection from Features<->pyarrow.Schema
    """
    if isinstance(pa_type, pa.StructType):
        return {field.name: generate_from_arrow_type(field.type) for field in pa_type}
    elif isinstance(pa_type, pa.FixedSizeListType):
        return Sequence(feature=generate_from_arrow_type(pa_type.value_type), length=pa_type.list_size)
    elif isinstance(pa_type, pa.ListType):
        feature = generate_from_arrow_type(pa_type.value_type)
        if isinstance(feature, (dict, tuple, list)):
            return [feature]
        return Sequence(feature=feature)
    elif isinstance(pa_type, pa.LargeListType):
        feature = generate_from_arrow_type(pa_type.value_type)
        return LargeList(feature=feature)
    elif isinstance(pa_type, _ArrayXDExtensionType):
        array_feature = [None, None, Array2D, Array3D, Array4D, Array5D][pa_type.ndims]
        return array_feature(shape=pa_type.shape, dtype=pa_type.value_type)
    elif isinstance(pa_type, pa.DataType):
        return Value(dtype=_arrow_to_datasets_dtype(pa_type))
    else:
        raise ValueError(f"Cannot convert {pa_type} to a Feature type.")


def numpy_to_pyarrow_listarray(arr: np.ndarray, type: pa.DataType = None) -> pa.ListArray:
    """Build a PyArrow ListArray from a multidimensional NumPy array"""
    arr = np.array(arr)
    values = pa.array(arr.flatten(), type=type)
    for i in range(arr.ndim - 1):
        n_offsets = reduce(mul, arr.shape[: arr.ndim - i - 1], 1)
        step_offsets = arr.shape[arr.ndim - i - 1]
        offsets = pa.array(np.arange(n_offsets + 1) * step_offsets, type=pa.int32())
        values = pa.ListArray.from_arrays(offsets, values)
    return values


def list_of_pa_arrays_to_pyarrow_listarray(l_arr: list[Optional[pa.Array]]) -> pa.ListArray:
    null_mask = np.array([arr is None for arr in l_arr])
    null_indices = np.arange(len(null_mask))[null_mask] - np.arange(np.sum(null_mask))
    l_arr = [arr for arr in l_arr if arr is not None]
    offsets = np.cumsum(
        [0] + [len(arr) for arr in l_arr], dtype=object
    )  # convert to dtype object to allow None insertion
    offsets = np.insert(offsets, null_indices, None)
    offsets = pa.array(offsets, type=pa.int32())
    values = pa.concat_arrays(l_arr)
    return pa.ListArray.from_arrays(offsets, values)


def list_of_np_array_to_pyarrow_listarray(l_arr: list[np.ndarray], type: pa.DataType = None) -> pa.ListArray:
    """Build a PyArrow ListArray from a possibly nested list of NumPy arrays"""
    if len(l_arr) > 0:
        return list_of_pa_arrays_to_pyarrow_listarray(
            [numpy_to_pyarrow_listarray(arr, type=type) if arr is not None else None for arr in l_arr]
        )
    else:
        return pa.array([], type=type)


def contains_any_np_array(data: Any):
    """Return `True` if data is a NumPy ndarray or (recursively) if first non-null value in list is a NumPy ndarray.

    Args:
        data (Any): Data.

    Returns:
        bool
    """
    if isinstance(data, np.ndarray):
        return True
    elif isinstance(data, list):
        return contains_any_np_array(first_non_null_value(data)[1])
    else:
        return False


def any_np_array_to_pyarrow_listarray(data: Union[np.ndarray, list], type: pa.DataType = None) -> pa.ListArray:
    """Convert to PyArrow ListArray either a NumPy ndarray or (recursively) a list that may contain any NumPy ndarray.

    Args:
        data (Union[np.ndarray, List]): Data.
        type (pa.DataType): Explicit PyArrow DataType passed to coerce the ListArray data type.

    Returns:
        pa.ListArray
    """
    if isinstance(data, np.ndarray):
        return numpy_to_pyarrow_listarray(data, type=type)
    elif isinstance(data, list):
        return list_of_pa_arrays_to_pyarrow_listarray([any_np_array_to_pyarrow_listarray(i, type=type) for i in data])


def to_pyarrow_listarray(data: Any, pa_type: _ArrayXDExtensionType) -> pa.Array:
    """Convert to PyArrow ListArray.

    Args:
        data (Any): Sequence, iterable, np.ndarray or pd.Series.
        pa_type (_ArrayXDExtensionType): Any of the ArrayNDExtensionType.

    Returns:
        pyarrow.Array
    """
    if contains_any_np_array(data):
        return any_np_array_to_pyarrow_listarray(data, type=pa_type.value_type)
    else:
        return pa.array(data, pa_type.storage_dtype)


def _visit(feature: FeatureType, func: Callable[[FeatureType], Optional[FeatureType]]) -> FeatureType:
    """Visit a (possibly nested) feature.

    Args:
        feature (FeatureType): the feature type to be checked
    Returns:
        visited feature (FeatureType)
    """
    if isinstance(feature, Features):
        out = func(Features({k: _visit(f, func) for k, f in feature.items()}))
    elif isinstance(feature, dict):
        out = func({k: _visit(f, func) for k, f in feature.items()})
    elif isinstance(feature, (list, tuple)):
        out = func([_visit(feature[0], func)])
    elif isinstance(feature, LargeList):
        out = func(LargeList(_visit(feature.feature, func)))
    elif isinstance(feature, Sequence):
        out = func(Sequence(_visit(feature.feature, func), length=feature.length))
    else:
        out = func(feature)
    return feature if out is None else out


_VisitPath = list[Union[str, Literal[0]]]


def _visit_with_path(
    feature: FeatureType, func: Callable[[FeatureType, _VisitPath], Optional[FeatureType]], visit_path: _VisitPath = []
) -> FeatureType:
    """Visit a (possibly nested) feature with its path in the Feature object.

    A path in a nested feature object is the list of keys that need to be
    sequentially accessed to get to the sub-feature.

    For example:
    - ["foo"] corresponds to the column "foo"
    - ["foo", 0] corresponds to the sub-feature of the lists in "foo"
    - ["foo", "bar"] corresponds to the sub-feature of the dicts in "foo" with key "bar"

    Args:
        feature (`FeatureType`): the feature type to be checked.

    Returns:
        `FeatureType`: the visited feature.
    """
    if isinstance(feature, Sequence) and isinstance(feature.feature, dict):
        feature = {k: [f] for k, f in feature.feature.items()}
        # ^ Sequence of dicts is special, it must be converted to a dict of lists (see https://huggingface.co/docs/datasets/v2.16.1/en/package_reference/main_classes#datasets.Features)
    if isinstance(feature, Features):
        out = func(Features({k: _visit_with_path(f, func, visit_path + [k]) for k, f in feature.items()}), visit_path)
    elif isinstance(feature, dict):
        out = func({k: _visit_with_path(f, func, visit_path + [k]) for k, f in feature.items()}, visit_path)
    elif isinstance(feature, (list, tuple)):
        out = func([_visit_with_path(feature[0], func, visit_path + [0])], visit_path)
    elif isinstance(feature, Sequence):
        out = func(
            Sequence(_visit_with_path(feature.feature, func, visit_path + [0]), length=feature.length), visit_path
        )
    elif isinstance(feature, LargeList):
        out = func(LargeList(_visit_with_path(feature.feature, func, visit_path + [0])), visit_path)
    else:
        out = func(feature, visit_path)
    return feature if out is None else out


def require_decoding(feature: FeatureType, ignore_decode_attribute: bool = False) -> bool:
    """Check if a (possibly nested) feature requires decoding.

    Args:
        feature (FeatureType): the feature type to be checked
        ignore_decode_attribute (:obj:`bool`, default ``False``): Whether to ignore the current value
            of the `decode` attribute of the decodable feature types.
    Returns:
        :obj:`bool`
    """
    if isinstance(feature, dict):
        return any(require_decoding(f) for f in feature.values())
    elif isinstance(feature, (list, tuple)):
        return require_decoding(feature[0])
    elif isinstance(feature, LargeList):
        return require_decoding(feature.feature)
    elif isinstance(feature, Sequence):
        return require_decoding(feature.feature)
    else:
        return hasattr(feature, "decode_example") and (
            getattr(feature, "decode", True) if not ignore_decode_attribute else True
        )


def require_storage_cast(feature: FeatureType) -> bool:
    """Check if a (possibly nested) feature requires storage casting.

    Args:
        feature (FeatureType): the feature type to be checked
    Returns:
        :obj:`bool`
    """
    if isinstance(feature, dict):
        return any(require_storage_cast(f) for f in feature.values())
    elif isinstance(feature, (list, tuple)):
        return require_storage_cast(feature[0])
    elif isinstance(feature, LargeList):
        return require_storage_cast(feature.feature)
    elif isinstance(feature, Sequence):
        return require_storage_cast(feature.feature)
    else:
        return hasattr(feature, "cast_storage")


def require_storage_embed(feature: FeatureType) -> bool:
    """Check if a (possibly nested) feature requires embedding data into storage.

    Args:
        feature (FeatureType): the feature type to be checked
    Returns:
        :obj:`bool`
    """
    if isinstance(feature, dict):
        return any(require_storage_cast(f) for f in feature.values())
    elif isinstance(feature, (list, tuple)):
        return require_storage_cast(feature[0])
    elif isinstance(feature, LargeList):
        return require_storage_cast(feature.feature)
    elif isinstance(feature, Sequence):
        return require_storage_cast(feature.feature)
    else:
        return hasattr(feature, "embed_storage")


def keep_features_dicts_synced(func):
    """
    Wrapper to keep the secondary dictionary, which tracks whether keys are decodable, of the :class:`datasets.Features` object
    in sync with the main dictionary.
    """

    @wraps(func)
    def wrapper(*args, **kwargs):
        if args:
            self: "Features" = args[0]
            args = args[1:]
        else:
            self: "Features" = kwargs.pop("self")
        out = func(self, *args, **kwargs)
        assert hasattr(self, "_column_requires_decoding")
        self._column_requires_decoding = {col: require_decoding(feature) for col, feature in self.items()}
        return out

    wrapper._decorator_name_ = "_keep_dicts_synced"
    return wrapper


class Features(dict):
    """A special dictionary that defines the internal structure of a dataset.

    Instantiated with a dictionary of type `dict[str, FieldType]`, where keys are the desired column names,
    and values are the type of that column.

    `FieldType` can be one of the following:
        - [`Value`] feature specifies a single data type value, e.g. `int64` or `string`.
        - [`ClassLabel`] feature specifies a predefined set of classes which can have labels associated to them and
          will be stored as integers in the dataset.
        - Python `dict` specifies a composite feature containing a mapping of sub-fields to sub-features.
          It's possible to have nested fields of nested fields in an arbitrary manner.
        - Python `list`, [`LargeList`] or [`Sequence`] specifies a composite feature containing a sequence of
          sub-features, all of the same feature type.

          <Tip>

           A [`Sequence`] with an internal dictionary feature will be automatically converted into a dictionary of
           lists. This behavior is implemented to have a compatibility layer with the TensorFlow Datasets library but may be
           un-wanted in some cases. If you don't want this behavior, you can use a Python `list` or a [`LargeList`]
           instead of the [`Sequence`].

          </Tip>

        - [`Array2D`], [`Array3D`], [`Array4D`] or [`Array5D`] feature for multidimensional arrays.
        - [`Audio`] feature to store the absolute path to an audio file or a dictionary with the relative path
          to an audio file ("path" key) and its bytes content ("bytes" key). This feature extracts the audio data.
        - [`Image`] feature to store the absolute path to an image file, an `np.ndarray` object, a `PIL.Image.Image` object
          or a dictionary with the relative path to an image file ("path" key) and its bytes content ("bytes" key).
          This feature extracts the image data.
        - [`Translation`] or [`TranslationVariableLanguages`] feature specific to Machine Translation.
    """

    def __init__(*args, **kwargs):
        # self not in the signature to allow passing self as a kwarg
        if not args:
            raise TypeError("descriptor '__init__' of 'Features' object needs an argument")
        self, *args = args
        super(Features, self).__init__(*args, **kwargs)
        self._column_requires_decoding: dict[str, bool] = {
            col: require_decoding(feature) for col, feature in self.items()
        }

    __setitem__ = keep_features_dicts_synced(dict.__setitem__)
    __delitem__ = keep_features_dicts_synced(dict.__delitem__)
    update = keep_features_dicts_synced(dict.update)
    setdefault = keep_features_dicts_synced(dict.setdefault)
    pop = keep_features_dicts_synced(dict.pop)
    popitem = keep_features_dicts_synced(dict.popitem)
    clear = keep_features_dicts_synced(dict.clear)

    def __reduce__(self):
        return Features, (dict(self),)

    @property
    def type(self):
        """
        Features field types.

        Returns:
            :obj:`pyarrow.DataType`
        """
        return get_nested_type(self)

    @property
    def arrow_schema(self):
        """
        Features schema.

        Returns:
            :obj:`pyarrow.Schema`
        """
        hf_metadata = {"info": {"features": self.to_dict()}}
        return pa.schema(self.type).with_metadata({"huggingface": json.dumps(hf_metadata)})

    @classmethod
    def from_arrow_schema(cls, pa_schema: pa.Schema) -> "Features":
        """
        Construct [`Features`] from Arrow Schema.
        It also checks the schema metadata for Hugging Face Datasets features.
        Non-nullable fields are not supported and set to nullable.

        Also, pa.dictionary is not supported and it uses its underlying type instead.
        Therefore datasets convert DictionaryArray objects to their actual values.

        Args:
            pa_schema (`pyarrow.Schema`):
                Arrow Schema.

        Returns:
            [`Features`]
        """
        # try to load features from the arrow schema metadata
        metadata_features = Features()
        if pa_schema.metadata is not None and b"huggingface" in pa_schema.metadata:
            metadata = json.loads(pa_schema.metadata[b"huggingface"].decode())
            if "info" in metadata and "features" in metadata["info"] and metadata["info"]["features"] is not None:
                metadata_features = Features.from_dict(metadata["info"]["features"])
        metadata_features_schema = metadata_features.arrow_schema
        obj = {
            field.name: (
                metadata_features[field.name]
                if field.name in metadata_features and metadata_features_schema.field(field.name) == field
                else generate_from_arrow_type(field.type)
            )
            for field in pa_schema
        }
        return cls(**obj)

    @classmethod
    def from_dict(cls, dic) -> "Features":
        """
        Construct [`Features`] from dict.

        Regenerate the nested feature object from a deserialized dict.
        We use the `_type` key to infer the dataclass name of the feature `FieldType`.

        It allows for a convenient constructor syntax
        to define features from deserialized JSON dictionaries. This function is used in particular when deserializing
        a [`DatasetInfo`] that was dumped to a JSON object. This acts as an analogue to
        [`Features.from_arrow_schema`] and handles the recursive field-by-field instantiation, but doesn't require
        any mapping to/from pyarrow, except for the fact that it takes advantage of the mapping of pyarrow primitive
        dtypes that [`Value`] automatically performs.

        Args:
            dic (`dict[str, Any]`):
                Python dictionary.

        Returns:
            `Features`

        Example::
            >>> Features.from_dict({'_type': {'dtype': 'string', 'id': None, '_type': 'Value'}})
            {'_type': Value(dtype='string', id=None)}
        """
        obj = generate_from_dict(dic)
        return cls(**obj)

    def to_dict(self):
        return asdict(self)

    def _to_yaml_list(self) -> list:
        # we compute the YAML list from the dict representation that is used for JSON dump
        yaml_data = self.to_dict()

        def simplify(feature: dict) -> dict:
            if not isinstance(feature, dict):
                raise TypeError(f"Expected a dict but got a {type(feature)}: {feature}")

            for list_type in ["large_list", "list", "sequence"]:
                #
                # list_type:                ->              list_type: int32
                #   dtype: int32            ->
                #
                if isinstance(feature.get(list_type), dict) and list(feature[list_type]) == ["dtype"]:
                    feature[list_type] = feature[list_type]["dtype"]

                #
                # list_type:                ->              list_type:
                #   struct:                 ->              - name: foo
                #   - name: foo             ->                dtype: int32
                #     dtype: int32          ->
                #
                if isinstance(feature.get(list_type), dict) and list(feature[list_type]) == ["struct"]:
                    feature[list_type] = feature[list_type]["struct"]

            #
            # class_label:              ->              class_label:
            #   names:                  ->                names:
            #   - negative              ->                  '0': negative
            #   - positive              ->                  '1': positive
            #
            if isinstance(feature.get("class_label"), dict) and isinstance(feature["class_label"].get("names"), list):
                # server-side requirement: keys must be strings
                feature["class_label"]["names"] = {
                    str(label_id): label_name for label_id, label_name in enumerate(feature["class_label"]["names"])
                }
            return feature

        def to_yaml_inner(obj: Union[dict, list]) -> dict:
            if isinstance(obj, dict):
                _type = obj.pop("_type", None)
                if _type == "LargeList":
                    _feature = obj.pop("feature")
                    return simplify({"large_list": to_yaml_inner(_feature), **obj})
                elif _type == "Sequence":
                    _feature = obj.pop("feature")
                    return simplify({"sequence": to_yaml_inner(_feature), **obj})
                elif _type == "Value":
                    return obj
                elif _type and not obj:
                    return {"dtype": camelcase_to_snakecase(_type)}
                elif _type:
                    return {"dtype": simplify({camelcase_to_snakecase(_type): obj})}
                else:
                    return {"struct": [{"name": name, **to_yaml_inner(_feature)} for name, _feature in obj.items()]}
            elif isinstance(obj, list):
                return simplify({"list": simplify(to_yaml_inner(obj[0]))})
            elif isinstance(obj, tuple):
                return to_yaml_inner(list(obj))
            else:
                raise TypeError(f"Expected a dict or a list but got {type(obj)}: {obj}")

        def to_yaml_types(obj: dict) -> dict:
            if isinstance(obj, dict):
                return {k: to_yaml_types(v) for k, v in obj.items()}
            elif isinstance(obj, list):
                return [to_yaml_types(v) for v in obj]
            elif isinstance(obj, tuple):
                return to_yaml_types(list(obj))
            else:
                return obj

        return to_yaml_types(to_yaml_inner(yaml_data)["struct"])

    @classmethod
    def _from_yaml_list(cls, yaml_data: list) -> "Features":
        yaml_data = copy.deepcopy(yaml_data)

        # we convert the list obtained from YAML data into the dict representation that is used for JSON dump

        def unsimplify(feature: dict) -> dict:
            if not isinstance(feature, dict):
                raise TypeError(f"Expected a dict but got a {type(feature)}: {feature}")

            for list_type in ["large_list", "list", "sequence"]:
                #
                # list_type: int32          ->              list_type:
                #                           ->                dtype: int32
                #
                if isinstance(feature.get(list_type), str):
                    feature[list_type] = {"dtype": feature[list_type]}

            #
            # class_label:              ->              class_label:
            #   names:                  ->                names:
            #     '0': negative              ->               - negative
            #     '1': positive              ->               - positive
            #
            if isinstance(feature.get("class_label"), dict) and isinstance(feature["class_label"].get("names"), dict):
                label_ids = sorted(feature["class_label"]["names"], key=int)
                if label_ids and [int(label_id) for label_id in label_ids] != list(range(int(label_ids[-1]) + 1)):
                    raise ValueError(
                        f"ClassLabel expected a value for all label ids [0:{int(label_ids[-1]) + 1}] but some ids are missing."
                    )
                feature["class_label"]["names"] = [feature["class_label"]["names"][label_id] for label_id in label_ids]
            return feature

        def from_yaml_inner(obj: Union[dict, list]) -> Union[dict, list]:
            if isinstance(obj, dict):
                if not obj:
                    return {}
                _type = next(iter(obj))
                if _type == "large_list":
                    _feature = unsimplify(obj).pop(_type)
                    return {"feature": from_yaml_inner(_feature), **obj, "_type": "LargeList"}
                if _type == "sequence":
                    _feature = unsimplify(obj).pop(_type)
                    return {"feature": from_yaml_inner(_feature), **obj, "_type": "Sequence"}
                if _type == "list":
                    return [from_yaml_inner(unsimplify(obj)[_type])]
                if _type == "struct":
                    return from_yaml_inner(obj["struct"])
                elif _type == "dtype":
                    if isinstance(obj["dtype"], str):
                        # e.g. int32, float64, string, audio, image
                        try:
                            Value(obj["dtype"])
                            return {**obj, "_type": "Value"}
                        except ValueError:
                            # e.g. Audio, Image, ArrayXD
                            return {"_type": snakecase_to_camelcase(obj["dtype"])}
                    else:
                        return from_yaml_inner(obj["dtype"])
                else:
                    return {"_type": snakecase_to_camelcase(_type), **unsimplify(obj)[_type]}
            elif isinstance(obj, list):
                names = [_feature.pop("name") for _feature in obj]
                return {name: from_yaml_inner(_feature) for name, _feature in zip(names, obj)}
            else:
                raise TypeError(f"Expected a dict or a list but got {type(obj)}: {obj}")

        return cls.from_dict(from_yaml_inner(yaml_data))

    def encode_example(self, example):
        """
        Encode example into a format for Arrow.

        Args:
            example (`dict[str, Any]`):
                Data in a Dataset row.

        Returns:
            `dict[str, Any]`
        """
        example = cast_to_python_objects(example)
        return encode_nested_example(self, example)

    def encode_column(self, column, column_name: str):
        """
        Encode column into a format for Arrow.

        Args:
            column (`list[Any]`):
                Data in a Dataset column.
            column_name (`str`):
                Dataset column name.

        Returns:
            `list[Any]`
        """
        column = cast_to_python_objects(column)
        return [encode_nested_example(self[column_name], obj, level=1) for obj in column]

    def encode_batch(self, batch):
        """
        Encode batch into a format for Arrow.

        Args:
            batch (`dict[str, list[Any]]`):
                Data in a Dataset batch.

        Returns:
            `dict[str, list[Any]]`
        """
        encoded_batch = {}
        if set(batch) != set(self):
            raise ValueError(f"Column mismatch between batch {set(batch)} and features {set(self)}")
        for key, column in batch.items():
            column = cast_to_python_objects(column)
            encoded_batch[key] = [encode_nested_example(self[key], obj, level=1) for obj in column]
        return encoded_batch

    def decode_example(self, example: dict, token_per_repo_id: Optional[dict[str, Union[str, bool, None]]] = None):
        """Decode example with custom feature decoding.

        Args:
            example (`dict[str, Any]`):
                Dataset row data.
            token_per_repo_id (`dict`, *optional*):
                To access and decode audio or image files from private repositories on the Hub, you can pass
                a dictionary `repo_id (str) -> token (bool or str)`.

        Returns:
            `dict[str, Any]`
        """

        return {
            column_name: decode_nested_example(feature, value, token_per_repo_id=token_per_repo_id)
            if self._column_requires_decoding[column_name]
            else value
            for column_name, (feature, value) in zip_dict(
                {key: value for key, value in self.items() if key in example}, example
            )
        }

    def decode_column(self, column: list, column_name: str):
        """Decode column with custom feature decoding.

        Args:
            column (`list[Any]`):
                Dataset column data.
            column_name (`str`):
                Dataset column name.

        Returns:
            `list[Any]`
        """
        return (
            [decode_nested_example(self[column_name], value) if value is not None else None for value in column]
            if self._column_requires_decoding[column_name]
            else column
        )

    def decode_batch(self, batch: dict, token_per_repo_id: Optional[dict[str, Union[str, bool, None]]] = None):
        """Decode batch with custom feature decoding.

        Args:
            batch (`dict[str, list[Any]]`):
                Dataset batch data.
            token_per_repo_id (`dict`, *optional*):
                To access and decode audio or image files from private repositories on the Hub, you can pass
                a dictionary repo_id (str) -> token (bool or str)

        Returns:
            `dict[str, list[Any]]`
        """
        decoded_batch = {}
        for column_name, column in batch.items():
            decoded_batch[column_name] = (
                [
                    decode_nested_example(self[column_name], value, token_per_repo_id=token_per_repo_id)
                    if value is not None
                    else None
                    for value in column
                ]
                if self._column_requires_decoding[column_name]
                else column
            )
        return decoded_batch

    def copy(self) -> "Features":
        """
        Make a deep copy of [`Features`].

        Returns:
            [`Features`]

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", split="train")
        >>> copy_of_features = ds.features.copy()
        >>> copy_of_features
        {'label': ClassLabel(names=['neg', 'pos'], id=None),
         'text': Value(dtype='string', id=None)}
        ```
        """
        return copy.deepcopy(self)

    def reorder_fields_as(self, other: "Features") -> "Features":
        """
        Reorder Features fields to match the field order of other [`Features`].

        The order of the fields is important since it matters for the underlying arrow data.
        Re-ordering the fields allows to make the underlying arrow data type match.

        Args:
            other ([`Features`]):
                The other [`Features`] to align with.

        Returns:
            [`Features`]

        Example::

            >>> from datasets import Features, Sequence, Value
            >>> # let's say we have two features with a different order of nested fields (for a and b for example)
            >>> f1 = Features({"root": Sequence({"a": Value("string"), "b": Value("string")})})
            >>> f2 = Features({"root": {"b": Sequence(Value("string")), "a": Sequence(Value("string"))}})
            >>> assert f1.type != f2.type
            >>> # re-ordering keeps the base structure (here Sequence is defined at the root level), but makes the fields order match
            >>> f1.reorder_fields_as(f2)
            {'root': Sequence(feature={'b': Value(dtype='string', id=None), 'a': Value(dtype='string', id=None)}, length=-1, id=None)}
            >>> assert f1.reorder_fields_as(f2).type == f2.type
        """

        def recursive_reorder(source, target, stack=""):
            stack_position = " at " + stack[1:] if stack else ""
            if isinstance(target, Sequence):
                target = target.feature
                if isinstance(target, dict):
                    target = {k: [v] for k, v in target.items()}
                else:
                    target = [target]
            if isinstance(source, Sequence):
                sequence_kwargs = vars(source).copy()
                source = sequence_kwargs.pop("feature")
                if isinstance(source, dict):
                    source = {k: [v] for k, v in source.items()}
                    reordered = recursive_reorder(source, target, stack)
                    return Sequence({k: v[0] for k, v in reordered.items()}, **sequence_kwargs)
                else:
                    source = [source]
                    reordered = recursive_reorder(source, target, stack)
                    return Sequence(reordered[0], **sequence_kwargs)
            elif isinstance(source, dict):
                if not isinstance(target, dict):
                    raise ValueError(f"Type mismatch: between {source} and {target}" + stack_position)
                if sorted(source) != sorted(target):
                    message = (
                        f"Keys mismatch: between {source} (source) and {target} (target).\n"
                        f"{source.keys() - target.keys()} are missing from target "
                        f"and {target.keys() - source.keys()} are missing from source" + stack_position
                    )
                    raise ValueError(message)
                return {key: recursive_reorder(source[key], target[key], stack + f".{key}") for key in target}
            elif isinstance(source, list):
                if not isinstance(target, list):
                    raise ValueError(f"Type mismatch: between {source} and {target}" + stack_position)
                if len(source) != len(target):
                    raise ValueError(f"Length mismatch: between {source} and {target}" + stack_position)
                return [recursive_reorder(source[i], target[i], stack + ".<list>") for i in range(len(target))]
            elif isinstance(source, LargeList):
                if not isinstance(target, LargeList):
                    raise ValueError(f"Type mismatch: between {source} and {target}" + stack_position)
                return LargeList(recursive_reorder(source.feature, target.feature, stack))
            else:
                return source

        return Features(recursive_reorder(self, other))

    def flatten(self, max_depth=16) -> "Features":
        """Flatten the features. Every dictionary column is removed and is replaced by
        all the subfields it contains. The new fields are named by concatenating the
        name of the original column and the subfield name like this: `<original>.<subfield>`.

        If a column contains nested dictionaries, then all the lower-level subfields names are
        also concatenated to form new columns: `<original>.<subfield>.<subsubfield>`, etc.

        Returns:
            [`Features`]:
                The flattened features.

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("rajpurkar/squad", split="train")
        >>> ds.features.flatten()
        {'answers.answer_start': Sequence(feature=Value(dtype='int32', id=None), length=-1, id=None),
         'answers.text': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None),
         'context': Value(dtype='string', id=None),
         'id': Value(dtype='string', id=None),
         'question': Value(dtype='string', id=None),
         'title': Value(dtype='string', id=None)}
        ```
        """
        for depth in range(1, max_depth):
            no_change = True
            flattened = self.copy()
            for column_name, subfeature in self.items():
                if isinstance(subfeature, dict):
                    no_change = False
                    flattened.update({f"{column_name}.{k}": v for k, v in subfeature.items()})
                    del flattened[column_name]
                elif isinstance(subfeature, Sequence) and isinstance(subfeature.feature, dict):
                    no_change = False
                    flattened.update(
                        {
                            f"{column_name}.{k}": Sequence(v) if not isinstance(v, dict) else [v]
                            for k, v in subfeature.feature.items()
                        }
                    )
                    del flattened[column_name]
                elif hasattr(subfeature, "flatten") and subfeature.flatten() != subfeature:
                    no_change = False
                    flattened.update({f"{column_name}.{k}": v for k, v in subfeature.flatten().items()})
                    del flattened[column_name]
            self = flattened
            if no_change:
                break
        return self


def _align_features(features_list: list[Features]) -> list[Features]:
    """Align dictionaries of features so that the keys that are found in multiple dictionaries share the same feature."""
    name2feature = {}
    for features in features_list:
        for k, v in features.items():
            if k in name2feature and isinstance(v, dict):
                # Recursively align features.
                name2feature[k] = _align_features([name2feature[k], v])[0]
            elif k not in name2feature or (isinstance(name2feature[k], Value) and name2feature[k].dtype == "null"):
                name2feature[k] = v

    return [Features({k: name2feature[k] for k in features.keys()}) for features in features_list]


def _check_if_features_can_be_aligned(features_list: list[Features]):
    """Check if the dictionaries of features can be aligned.

    Two dictonaries of features can be aligned if the keys they share have the same type or some of them is of type `Value("null")`.
    """
    name2feature = {}
    for features in features_list:
        for k, v in features.items():
            if k not in name2feature or (isinstance(name2feature[k], Value) and name2feature[k].dtype == "null"):
                name2feature[k] = v

    for features in features_list:
        for k, v in features.items():
            if isinstance(v, dict) and isinstance(name2feature[k], dict):
                # Deep checks for structure.
                _check_if_features_can_be_aligned([name2feature[k], v])
            elif not (isinstance(v, Value) and v.dtype == "null") and name2feature[k] != v:
                raise ValueError(
                    f'The features can\'t be aligned because the key {k} of features {features} has unexpected type - {v} (expected either {name2feature[k]} or Value("null").'
                )