File size: 95,134 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 |
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""This class handle features definition in datasets and some utilities to display table type."""
import copy
import json
import re
import sys
from collections.abc import Iterable, Mapping
from collections.abc import Sequence as SequenceABC
from collections.abc import Sequence as Sequence_
from dataclasses import InitVar, dataclass, field, fields
from functools import reduce, wraps
from operator import mul
from typing import Any, Callable, ClassVar, Literal, Optional, Union
import numpy as np
import pandas as pd
import pyarrow as pa
import pyarrow.compute as pc
import pyarrow.types
from pandas.api.extensions import ExtensionArray as PandasExtensionArray
from pandas.api.extensions import ExtensionDtype as PandasExtensionDtype
from .. import config
from ..naming import camelcase_to_snakecase, snakecase_to_camelcase
from ..table import array_cast
from ..utils import experimental, logging
from ..utils.py_utils import asdict, first_non_null_value, zip_dict
from .audio import Audio
from .image import Image, encode_pil_image
from .pdf import Pdf, encode_pdfplumber_pdf
from .translation import Translation, TranslationVariableLanguages
from .video import Video
logger = logging.get_logger(__name__)
def _arrow_to_datasets_dtype(arrow_type: pa.DataType) -> str:
"""
_arrow_to_datasets_dtype takes a pyarrow.DataType and converts it to a datasets string dtype.
In effect, `dt == string_to_arrow(_arrow_to_datasets_dtype(dt))`
"""
if pyarrow.types.is_null(arrow_type):
return "null"
elif pyarrow.types.is_boolean(arrow_type):
return "bool"
elif pyarrow.types.is_int8(arrow_type):
return "int8"
elif pyarrow.types.is_int16(arrow_type):
return "int16"
elif pyarrow.types.is_int32(arrow_type):
return "int32"
elif pyarrow.types.is_int64(arrow_type):
return "int64"
elif pyarrow.types.is_uint8(arrow_type):
return "uint8"
elif pyarrow.types.is_uint16(arrow_type):
return "uint16"
elif pyarrow.types.is_uint32(arrow_type):
return "uint32"
elif pyarrow.types.is_uint64(arrow_type):
return "uint64"
elif pyarrow.types.is_float16(arrow_type):
return "float16" # pyarrow dtype is "halffloat"
elif pyarrow.types.is_float32(arrow_type):
return "float32" # pyarrow dtype is "float"
elif pyarrow.types.is_float64(arrow_type):
return "float64" # pyarrow dtype is "double"
elif pyarrow.types.is_time32(arrow_type):
return f"time32[{pa.type_for_alias(str(arrow_type)).unit}]"
elif pyarrow.types.is_time64(arrow_type):
return f"time64[{pa.type_for_alias(str(arrow_type)).unit}]"
elif pyarrow.types.is_timestamp(arrow_type):
if arrow_type.tz is None:
return f"timestamp[{arrow_type.unit}]"
elif arrow_type.tz:
return f"timestamp[{arrow_type.unit}, tz={arrow_type.tz}]"
else:
raise ValueError(f"Unexpected timestamp object {arrow_type}.")
elif pyarrow.types.is_date32(arrow_type):
return "date32" # pyarrow dtype is "date32[day]"
elif pyarrow.types.is_date64(arrow_type):
return "date64" # pyarrow dtype is "date64[ms]"
elif pyarrow.types.is_duration(arrow_type):
return f"duration[{arrow_type.unit}]"
elif pyarrow.types.is_decimal128(arrow_type):
return f"decimal128({arrow_type.precision}, {arrow_type.scale})"
elif pyarrow.types.is_decimal256(arrow_type):
return f"decimal256({arrow_type.precision}, {arrow_type.scale})"
elif pyarrow.types.is_binary(arrow_type):
return "binary"
elif pyarrow.types.is_large_binary(arrow_type):
return "large_binary"
elif pyarrow.types.is_string(arrow_type):
return "string"
elif pyarrow.types.is_large_string(arrow_type):
return "large_string"
elif pyarrow.types.is_dictionary(arrow_type):
return _arrow_to_datasets_dtype(arrow_type.value_type)
else:
raise ValueError(f"Arrow type {arrow_type} does not have a datasets dtype equivalent.")
def string_to_arrow(datasets_dtype: str) -> pa.DataType:
"""
string_to_arrow takes a datasets string dtype and converts it to a pyarrow.DataType.
In effect, `dt == string_to_arrow(_arrow_to_datasets_dtype(dt))`
This is necessary because the datasets.Value() primitive type is constructed using a string dtype
Value(dtype=str)
But Features.type (via `get_nested_type()` expects to resolve Features into a pyarrow Schema,
which means that each Value() must be able to resolve into a corresponding pyarrow.DataType, which is the
purpose of this function.
"""
def _dtype_error_msg(dtype, pa_dtype, examples=None, urls=None):
msg = f"{dtype} is not a validly formatted string representation of the pyarrow {pa_dtype} type."
if examples:
examples = ", ".join(examples[:-1]) + " or " + examples[-1] if len(examples) > 1 else examples[0]
msg += f"\nValid examples include: {examples}."
if urls:
urls = ", ".join(urls[:-1]) + " and " + urls[-1] if len(urls) > 1 else urls[0]
msg += f"\nFor more insformation, see: {urls}."
return msg
if datasets_dtype in pa.__dict__:
return pa.__dict__[datasets_dtype]()
if (datasets_dtype + "_") in pa.__dict__:
return pa.__dict__[datasets_dtype + "_"]()
timestamp_matches = re.search(r"^timestamp\[(.*)\]$", datasets_dtype)
if timestamp_matches:
timestamp_internals = timestamp_matches.group(1)
internals_matches = re.search(r"^(s|ms|us|ns),\s*tz=([a-zA-Z0-9/_+\-:]*)$", timestamp_internals)
if timestamp_internals in ["s", "ms", "us", "ns"]:
return pa.timestamp(timestamp_internals)
elif internals_matches:
return pa.timestamp(internals_matches.group(1), internals_matches.group(2))
else:
raise ValueError(
_dtype_error_msg(
datasets_dtype,
"timestamp",
examples=["timestamp[us]", "timestamp[us, tz=America/New_York"],
urls=["https://arrow.apache.org/docs/python/generated/pyarrow.timestamp.html"],
)
)
duration_matches = re.search(r"^duration\[(.*)\]$", datasets_dtype)
if duration_matches:
duration_internals = duration_matches.group(1)
if duration_internals in ["s", "ms", "us", "ns"]:
return pa.duration(duration_internals)
else:
raise ValueError(
_dtype_error_msg(
datasets_dtype,
"duration",
examples=["duration[s]", "duration[us]"],
urls=["https://arrow.apache.org/docs/python/generated/pyarrow.duration.html"],
)
)
time_matches = re.search(r"^time(.*)\[(.*)\]$", datasets_dtype)
if time_matches:
time_internals_bits = time_matches.group(1)
if time_internals_bits == "32":
time_internals_unit = time_matches.group(2)
if time_internals_unit in ["s", "ms"]:
return pa.time32(time_internals_unit)
else:
raise ValueError(
f"{time_internals_unit} is not a valid unit for the pyarrow time32 type. Supported units: s (second) and ms (millisecond)."
)
elif time_internals_bits == "64":
time_internals_unit = time_matches.group(2)
if time_internals_unit in ["us", "ns"]:
return pa.time64(time_internals_unit)
else:
raise ValueError(
f"{time_internals_unit} is not a valid unit for the pyarrow time64 type. Supported units: us (microsecond) and ns (nanosecond)."
)
else:
raise ValueError(
_dtype_error_msg(
datasets_dtype,
"time",
examples=["time32[s]", "time64[us]"],
urls=[
"https://arrow.apache.org/docs/python/generated/pyarrow.time32.html",
"https://arrow.apache.org/docs/python/generated/pyarrow.time64.html",
],
)
)
decimal_matches = re.search(r"^decimal(.*)\((.*)\)$", datasets_dtype)
if decimal_matches:
decimal_internals_bits = decimal_matches.group(1)
if decimal_internals_bits == "128":
decimal_internals_precision_and_scale = re.search(r"^(\d+),\s*(-?\d+)$", decimal_matches.group(2))
if decimal_internals_precision_and_scale:
precision = decimal_internals_precision_and_scale.group(1)
scale = decimal_internals_precision_and_scale.group(2)
return pa.decimal128(int(precision), int(scale))
else:
raise ValueError(
_dtype_error_msg(
datasets_dtype,
"decimal128",
examples=["decimal128(10, 2)", "decimal128(4, -2)"],
urls=["https://arrow.apache.org/docs/python/generated/pyarrow.decimal128.html"],
)
)
elif decimal_internals_bits == "256":
decimal_internals_precision_and_scale = re.search(r"^(\d+),\s*(-?\d+)$", decimal_matches.group(2))
if decimal_internals_precision_and_scale:
precision = decimal_internals_precision_and_scale.group(1)
scale = decimal_internals_precision_and_scale.group(2)
return pa.decimal256(int(precision), int(scale))
else:
raise ValueError(
_dtype_error_msg(
datasets_dtype,
"decimal256",
examples=["decimal256(30, 2)", "decimal256(38, -4)"],
urls=["https://arrow.apache.org/docs/python/generated/pyarrow.decimal256.html"],
)
)
else:
raise ValueError(
_dtype_error_msg(
datasets_dtype,
"decimal",
examples=["decimal128(12, 3)", "decimal256(40, 6)"],
urls=[
"https://arrow.apache.org/docs/python/generated/pyarrow.decimal128.html",
"https://arrow.apache.org/docs/python/generated/pyarrow.decimal256.html",
],
)
)
raise ValueError(
f"Neither {datasets_dtype} nor {datasets_dtype + '_'} seems to be a pyarrow data type. "
f"Please make sure to use a correct data type, see: "
f"https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions"
)
def _cast_to_python_objects(obj: Any, only_1d_for_numpy: bool, optimize_list_casting: bool) -> tuple[Any, bool]:
"""
Cast pytorch/tensorflow/pandas objects to python numpy array/lists.
It works recursively.
If `optimize_list_casting` is True, to avoid iterating over possibly long lists, it first checks (recursively) if the first element that is not None or empty (if it is a sequence) has to be casted.
If the first element needs to be casted, then all the elements of the list will be casted, otherwise they'll stay the same.
This trick allows to cast objects that contain tokenizers outputs without iterating over every single token for example.
Args:
obj: the object (nested struct) to cast.
only_1d_for_numpy (bool): whether to keep the full multi-dim tensors as multi-dim numpy arrays, or convert them to
nested lists of 1-dimensional numpy arrays. This can be useful to keep only 1-d arrays to instantiate Arrow arrays.
Indeed Arrow only support converting 1-dimensional array values.
optimize_list_casting (bool): whether to optimize list casting by checking the first non-null element to see if it needs to be casted
and if it doesn't, not checking the rest of the list elements.
Returns:
casted_obj: the casted object
has_changed (bool): True if the object has been changed, False if it is identical
"""
if config.TF_AVAILABLE and "tensorflow" in sys.modules:
import tensorflow as tf
if config.TORCH_AVAILABLE and "torch" in sys.modules:
import torch
if config.JAX_AVAILABLE and "jax" in sys.modules:
import jax.numpy as jnp
if config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if config.PDFPLUMBER_AVAILABLE and "pdfplumber" in sys.modules:
import pdfplumber
if isinstance(obj, np.ndarray):
if obj.ndim == 0:
return obj[()], True
elif not only_1d_for_numpy or obj.ndim == 1:
return obj, False
else:
return (
[
_cast_to_python_objects(
x, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting
)[0]
for x in obj
],
True,
)
elif config.TORCH_AVAILABLE and "torch" in sys.modules and isinstance(obj, torch.Tensor):
if obj.dtype == torch.bfloat16:
return _cast_to_python_objects(
obj.detach().to(torch.float).cpu().numpy(),
only_1d_for_numpy=only_1d_for_numpy,
optimize_list_casting=optimize_list_casting,
)[0], True
if obj.ndim == 0:
return obj.detach().cpu().numpy()[()], True
elif not only_1d_for_numpy or obj.ndim == 1:
return obj.detach().cpu().numpy(), True
else:
return (
[
_cast_to_python_objects(
x, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting
)[0]
for x in obj.detach().cpu().numpy()
],
True,
)
elif config.TF_AVAILABLE and "tensorflow" in sys.modules and isinstance(obj, tf.Tensor):
if obj.ndim == 0:
return obj.numpy()[()], True
elif not only_1d_for_numpy or obj.ndim == 1:
return obj.numpy(), True
else:
return (
[
_cast_to_python_objects(
x, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting
)[0]
for x in obj.numpy()
],
True,
)
elif config.JAX_AVAILABLE and "jax" in sys.modules and isinstance(obj, jnp.ndarray):
if obj.ndim == 0:
return np.asarray(obj)[()], True
elif not only_1d_for_numpy or obj.ndim == 1:
return np.asarray(obj), True
else:
return (
[
_cast_to_python_objects(
x, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting
)[0]
for x in np.asarray(obj)
],
True,
)
elif config.PIL_AVAILABLE and "PIL" in sys.modules and isinstance(obj, PIL.Image.Image):
return encode_pil_image(obj), True
elif config.PDFPLUMBER_AVAILABLE and "pdfplumber" in sys.modules and isinstance(obj, pdfplumber.pdf.PDF):
return encode_pdfplumber_pdf(obj), True
elif isinstance(obj, pd.Series):
return (
_cast_to_python_objects(
obj.tolist(), only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting
)[0],
True,
)
elif isinstance(obj, pd.DataFrame):
return (
{
key: _cast_to_python_objects(
value, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting
)[0]
for key, value in obj.to_dict("series").items()
},
True,
)
elif isinstance(obj, pd.Timestamp):
return obj.to_pydatetime(), True
elif isinstance(obj, pd.Timedelta):
return obj.to_pytimedelta(), True
elif isinstance(obj, Mapping):
has_changed = not isinstance(obj, dict)
output = {}
for k, v in obj.items():
casted_v, has_changed_v = _cast_to_python_objects(
v, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting
)
has_changed |= has_changed_v
output[k] = casted_v
return output if has_changed else obj, has_changed
elif hasattr(obj, "__array__"):
if np.isscalar(obj):
return obj, False
else:
return (
_cast_to_python_objects(
obj.__array__(), only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting
)[0],
True,
)
elif isinstance(obj, (list, tuple)):
if len(obj) > 0:
for first_elmt in obj:
if _check_non_null_non_empty_recursive(first_elmt):
break
casted_first_elmt, has_changed_first_elmt = _cast_to_python_objects(
first_elmt, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting
)
if has_changed_first_elmt or not optimize_list_casting:
return (
[
_cast_to_python_objects(
elmt, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting
)[0]
for elmt in obj
],
True,
)
else:
if isinstance(obj, (list, tuple)):
return obj, False
else:
return list(obj), True
else:
return obj, False
else:
return obj, False
def cast_to_python_objects(obj: Any, only_1d_for_numpy=False, optimize_list_casting=True) -> Any:
"""
Cast numpy/pytorch/tensorflow/pandas objects to python lists.
It works recursively.
If `optimize_list_casting` is True, To avoid iterating over possibly long lists, it first checks (recursively) if the first element that is not None or empty (if it is a sequence) has to be casted.
If the first element needs to be casted, then all the elements of the list will be casted, otherwise they'll stay the same.
This trick allows to cast objects that contain tokenizers outputs without iterating over every single token for example.
Args:
obj: the object (nested struct) to cast
only_1d_for_numpy (bool, default ``False``): whether to keep the full multi-dim tensors as multi-dim numpy arrays, or convert them to
nested lists of 1-dimensional numpy arrays. This can be useful to keep only 1-d arrays to instantiate Arrow arrays.
Indeed Arrow only support converting 1-dimensional array values.
optimize_list_casting (bool, default ``True``): whether to optimize list casting by checking the first non-null element to see if it needs to be casted
and if it doesn't, not checking the rest of the list elements.
Returns:
casted_obj: the casted object
"""
return _cast_to_python_objects(
obj, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting
)[0]
@dataclass
class Value:
"""
Scalar feature value of a particular data type.
The possible dtypes of `Value` are as follows:
- `null`
- `bool`
- `int8`
- `int16`
- `int32`
- `int64`
- `uint8`
- `uint16`
- `uint32`
- `uint64`
- `float16`
- `float32` (alias float)
- `float64` (alias double)
- `time32[(s|ms)]`
- `time64[(us|ns)]`
- `timestamp[(s|ms|us|ns)]`
- `timestamp[(s|ms|us|ns), tz=(tzstring)]`
- `date32`
- `date64`
- `duration[(s|ms|us|ns)]`
- `decimal128(precision, scale)`
- `decimal256(precision, scale)`
- `binary`
- `large_binary`
- `string`
- `large_string`
Args:
dtype (`str`):
Name of the data type.
Example:
```py
>>> from datasets import Features
>>> features = Features({'stars': Value(dtype='int32')})
>>> features
{'stars': Value(dtype='int32', id=None)}
```
"""
dtype: str
id: Optional[str] = None
# Automatically constructed
pa_type: ClassVar[Any] = None
_type: str = field(default="Value", init=False, repr=False)
def __post_init__(self):
if self.dtype == "double": # fix inferred type
self.dtype = "float64"
if self.dtype == "float": # fix inferred type
self.dtype = "float32"
self.pa_type = string_to_arrow(self.dtype)
def __call__(self):
return self.pa_type
def encode_example(self, value):
if pa.types.is_boolean(self.pa_type):
return bool(value)
elif pa.types.is_integer(self.pa_type):
return int(value)
elif pa.types.is_floating(self.pa_type):
return float(value)
elif pa.types.is_string(self.pa_type):
return str(value)
else:
return value
class _ArrayXD:
def __post_init__(self):
self.shape = tuple(self.shape)
def __call__(self):
pa_type = globals()[self.__class__.__name__ + "ExtensionType"](self.shape, self.dtype)
return pa_type
def encode_example(self, value):
return value
@dataclass
class Array2D(_ArrayXD):
"""Create a two-dimensional array.
Args:
shape (`tuple`):
Size of each dimension.
dtype (`str`):
Name of the data type.
Example:
```py
>>> from datasets import Features
>>> features = Features({'x': Array2D(shape=(1, 3), dtype='int32')})
```
"""
shape: tuple
dtype: str
id: Optional[str] = None
# Automatically constructed
_type: str = field(default="Array2D", init=False, repr=False)
@dataclass
class Array3D(_ArrayXD):
"""Create a three-dimensional array.
Args:
shape (`tuple`):
Size of each dimension.
dtype (`str`):
Name of the data type.
Example:
```py
>>> from datasets import Features
>>> features = Features({'x': Array3D(shape=(1, 2, 3), dtype='int32')})
```
"""
shape: tuple
dtype: str
id: Optional[str] = None
# Automatically constructed
_type: str = field(default="Array3D", init=False, repr=False)
@dataclass
class Array4D(_ArrayXD):
"""Create a four-dimensional array.
Args:
shape (`tuple`):
Size of each dimension.
dtype (`str`):
Name of the data type.
Example:
```py
>>> from datasets import Features
>>> features = Features({'x': Array4D(shape=(1, 2, 2, 3), dtype='int32')})
```
"""
shape: tuple
dtype: str
id: Optional[str] = None
# Automatically constructed
_type: str = field(default="Array4D", init=False, repr=False)
@dataclass
class Array5D(_ArrayXD):
"""Create a five-dimensional array.
Args:
shape (`tuple`):
Size of each dimension.
dtype (`str`):
Name of the data type.
Example:
```py
>>> from datasets import Features
>>> features = Features({'x': Array5D(shape=(1, 2, 2, 3, 3), dtype='int32')})
```
"""
shape: tuple
dtype: str
id: Optional[str] = None
# Automatically constructed
_type: str = field(default="Array5D", init=False, repr=False)
class _ArrayXDExtensionType(pa.ExtensionType):
ndims: Optional[int] = None
def __init__(self, shape: tuple, dtype: str):
if self.ndims is None or self.ndims <= 1:
raise ValueError("You must instantiate an array type with a value for dim that is > 1")
if len(shape) != self.ndims:
raise ValueError(f"shape={shape} and ndims={self.ndims} don't match")
for dim in range(1, self.ndims):
if shape[dim] is None:
raise ValueError(f"Support only dynamic size on first dimension. Got: {shape}")
self.shape = tuple(shape)
self.value_type = dtype
self.storage_dtype = self._generate_dtype(self.value_type)
pa.ExtensionType.__init__(self, self.storage_dtype, f"{self.__class__.__module__}.{self.__class__.__name__}")
def __arrow_ext_serialize__(self):
return json.dumps((self.shape, self.value_type)).encode()
@classmethod
def __arrow_ext_deserialize__(cls, storage_type, serialized):
args = json.loads(serialized)
return cls(*args)
# This was added to pa.ExtensionType in pyarrow >= 13.0.0
def __reduce__(self):
return self.__arrow_ext_deserialize__, (self.storage_type, self.__arrow_ext_serialize__())
def __hash__(self):
return hash((self.__class__, self.shape, self.value_type))
def __arrow_ext_class__(self):
return ArrayExtensionArray
def _generate_dtype(self, dtype):
dtype = string_to_arrow(dtype)
for d in reversed(self.shape):
dtype = pa.list_(dtype)
# Don't specify the size of the list, since fixed length list arrays have issues
# being validated after slicing in pyarrow 0.17.1
return dtype
def to_pandas_dtype(self):
return PandasArrayExtensionDtype(self.value_type)
class Array2DExtensionType(_ArrayXDExtensionType):
ndims = 2
class Array3DExtensionType(_ArrayXDExtensionType):
ndims = 3
class Array4DExtensionType(_ArrayXDExtensionType):
ndims = 4
class Array5DExtensionType(_ArrayXDExtensionType):
ndims = 5
# Register the extension types for deserialization
pa.register_extension_type(Array2DExtensionType((1, 2), "int64"))
pa.register_extension_type(Array3DExtensionType((1, 2, 3), "int64"))
pa.register_extension_type(Array4DExtensionType((1, 2, 3, 4), "int64"))
pa.register_extension_type(Array5DExtensionType((1, 2, 3, 4, 5), "int64"))
def _is_zero_copy_only(pa_type: pa.DataType, unnest: bool = False) -> bool:
"""
When converting a pyarrow array to a numpy array, we must know whether this could be done in zero-copy or not.
This function returns the value of the ``zero_copy_only`` parameter to pass to ``.to_numpy()``, given the type of the pyarrow array.
# zero copy is available for all primitive types except booleans and temporal types (date, time, timestamp or duration)
# primitive types are types for which the physical representation in arrow and in numpy
# https://github.com/wesm/arrow/blob/c07b9b48cf3e0bbbab493992a492ae47e5b04cad/python/pyarrow/types.pxi#L821
# see https://arrow.apache.org/docs/python/generated/pyarrow.Array.html#pyarrow.Array.to_numpy
# and https://issues.apache.org/jira/browse/ARROW-2871?jql=text%20~%20%22boolean%20to_numpy%22
"""
def _unnest_pa_type(pa_type: pa.DataType) -> pa.DataType:
if pa.types.is_list(pa_type):
return _unnest_pa_type(pa_type.value_type)
return pa_type
if unnest:
pa_type = _unnest_pa_type(pa_type)
return pa.types.is_primitive(pa_type) and not (pa.types.is_boolean(pa_type) or pa.types.is_temporal(pa_type))
class ArrayExtensionArray(pa.ExtensionArray):
def __array__(self):
zero_copy_only = _is_zero_copy_only(self.storage.type, unnest=True)
return self.to_numpy(zero_copy_only=zero_copy_only)
def __getitem__(self, i):
return self.storage[i]
def to_numpy(self, zero_copy_only=True):
storage: pa.ListArray = self.storage
null_mask = storage.is_null().to_numpy(zero_copy_only=False)
if self.type.shape[0] is not None:
size = 1
null_indices = np.arange(len(storage))[null_mask] - np.arange(np.sum(null_mask))
for i in range(self.type.ndims):
size *= self.type.shape[i]
storage = storage.flatten()
numpy_arr = storage.to_numpy(zero_copy_only=zero_copy_only)
numpy_arr = numpy_arr.reshape(len(self) - len(null_indices), *self.type.shape)
if len(null_indices):
numpy_arr = np.insert(numpy_arr.astype(np.float64), null_indices, np.nan, axis=0)
else:
shape = self.type.shape
ndims = self.type.ndims
arrays = []
first_dim_offsets = np.array([off.as_py() for off in storage.offsets])
for i, is_null in enumerate(null_mask):
if is_null:
arrays.append(np.nan)
else:
storage_el = storage[i : i + 1]
first_dim = first_dim_offsets[i + 1] - first_dim_offsets[i]
# flatten storage
for _ in range(ndims):
storage_el = storage_el.flatten()
numpy_arr = storage_el.to_numpy(zero_copy_only=zero_copy_only)
arrays.append(numpy_arr.reshape(first_dim, *shape[1:]))
if len(np.unique(np.diff(first_dim_offsets))) > 1:
# ragged
numpy_arr = np.empty(len(arrays), dtype=object)
numpy_arr[:] = arrays
else:
numpy_arr = np.array(arrays)
return numpy_arr
def to_pylist(self, maps_as_pydicts: Optional[Literal["lossy", "strict"]] = None):
zero_copy_only = _is_zero_copy_only(self.storage.type, unnest=True)
numpy_arr = self.to_numpy(zero_copy_only=zero_copy_only)
if self.type.shape[0] is None and numpy_arr.dtype == object:
return [arr.tolist() for arr in numpy_arr.tolist()]
else:
return numpy_arr.tolist()
class PandasArrayExtensionDtype(PandasExtensionDtype):
_metadata = "value_type"
def __init__(self, value_type: Union["PandasArrayExtensionDtype", np.dtype]):
self._value_type = value_type
def __from_arrow__(self, array: Union[pa.Array, pa.ChunkedArray]):
if isinstance(array, pa.ChunkedArray):
array = array.type.wrap_array(pa.concat_arrays([chunk.storage for chunk in array.chunks]))
zero_copy_only = _is_zero_copy_only(array.storage.type, unnest=True)
numpy_arr = array.to_numpy(zero_copy_only=zero_copy_only)
return PandasArrayExtensionArray(numpy_arr)
@classmethod
def construct_array_type(cls):
return PandasArrayExtensionArray
@property
def type(self) -> type:
return np.ndarray
@property
def kind(self) -> str:
return "O"
@property
def name(self) -> str:
return f"array[{self.value_type}]"
@property
def value_type(self) -> np.dtype:
return self._value_type
class PandasArrayExtensionArray(PandasExtensionArray):
def __init__(self, data: np.ndarray, copy: bool = False):
self._data = data if not copy else np.array(data)
self._dtype = PandasArrayExtensionDtype(data.dtype)
def __array__(self, dtype=None):
"""
Convert to NumPy Array.
Note that Pandas expects a 1D array when dtype is set to object.
But for other dtypes, the returned shape is the same as the one of ``data``.
More info about pandas 1D requirement for PandasExtensionArray here:
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.api.extensions.ExtensionArray.html#pandas.api.extensions.ExtensionArray
"""
if dtype == np.dtype(object):
out = np.empty(len(self._data), dtype=object)
for i in range(len(self._data)):
out[i] = self._data[i]
return out
if dtype is None:
return self._data
else:
return self._data.astype(dtype)
def copy(self, deep: bool = False) -> "PandasArrayExtensionArray":
return PandasArrayExtensionArray(self._data, copy=True)
@classmethod
def _from_sequence(
cls, scalars, dtype: Optional[PandasArrayExtensionDtype] = None, copy: bool = False
) -> "PandasArrayExtensionArray":
if len(scalars) > 1 and all(
isinstance(x, np.ndarray) and x.shape == scalars[0].shape and x.dtype == scalars[0].dtype for x in scalars
):
data = np.array(scalars, dtype=dtype if dtype is None else dtype.value_type, copy=copy)
else:
data = np.empty(len(scalars), dtype=object)
data[:] = scalars
return cls(data, copy=copy)
@classmethod
def _concat_same_type(cls, to_concat: Sequence_["PandasArrayExtensionArray"]) -> "PandasArrayExtensionArray":
if len(to_concat) > 1 and all(
va._data.shape == to_concat[0]._data.shape and va._data.dtype == to_concat[0]._data.dtype
for va in to_concat
):
data = np.vstack([va._data for va in to_concat])
else:
data = np.empty(len(to_concat), dtype=object)
data[:] = [va._data for va in to_concat]
return cls(data, copy=False)
@property
def dtype(self) -> PandasArrayExtensionDtype:
return self._dtype
@property
def nbytes(self) -> int:
return self._data.nbytes
def isna(self) -> np.ndarray:
return np.array([pd.isna(arr).any() for arr in self._data])
def __setitem__(self, key: Union[int, slice, np.ndarray], value: Any) -> None:
raise NotImplementedError()
def __getitem__(self, item: Union[int, slice, np.ndarray]) -> Union[np.ndarray, "PandasArrayExtensionArray"]:
if isinstance(item, int):
return self._data[item]
return PandasArrayExtensionArray(self._data[item], copy=False)
def take(
self, indices: Sequence_[int], allow_fill: bool = False, fill_value: bool = None
) -> "PandasArrayExtensionArray":
indices: np.ndarray = np.asarray(indices, dtype=int)
if allow_fill:
fill_value = (
self.dtype.na_value if fill_value is None else np.asarray(fill_value, dtype=self.dtype.value_type)
)
mask = indices == -1
if (indices < -1).any():
raise ValueError("Invalid value in `indices`, must be all >= -1 for `allow_fill` is True")
elif len(self) > 0:
pass
elif not np.all(mask):
raise IndexError("Invalid take for empty PandasArrayExtensionArray, must be all -1.")
else:
data = np.array([fill_value] * len(indices), dtype=self.dtype.value_type)
return PandasArrayExtensionArray(data, copy=False)
took = self._data.take(indices, axis=0)
if allow_fill and mask.any():
took[mask] = [fill_value] * np.sum(mask)
return PandasArrayExtensionArray(took, copy=False)
def __len__(self) -> int:
return len(self._data)
def __eq__(self, other) -> np.ndarray:
if not isinstance(other, PandasArrayExtensionArray):
raise NotImplementedError(f"Invalid type to compare to: {type(other)}")
return (self._data == other._data).all()
def pandas_types_mapper(dtype):
if isinstance(dtype, _ArrayXDExtensionType):
return PandasArrayExtensionDtype(dtype.value_type)
@dataclass
class ClassLabel:
"""Feature type for integer class labels.
There are 3 ways to define a `ClassLabel`, which correspond to the 3 arguments:
* `num_classes`: Create 0 to (num_classes-1) labels.
* `names`: List of label strings.
* `names_file`: File containing the list of labels.
Under the hood the labels are stored as integers.
You can use negative integers to represent unknown/missing labels.
Args:
num_classes (`int`, *optional*):
Number of classes. All labels must be < `num_classes`.
names (`list` of `str`, *optional*):
String names for the integer classes.
The order in which the names are provided is kept.
names_file (`str`, *optional*):
Path to a file with names for the integer classes, one per line.
Example:
```py
>>> from datasets import Features, ClassLabel
>>> features = Features({'label': ClassLabel(num_classes=3, names=['bad', 'ok', 'good'])})
>>> features
{'label': ClassLabel(names=['bad', 'ok', 'good'], id=None)}
```
"""
num_classes: InitVar[Optional[int]] = None # Pseudo-field: ignored by asdict/fields when converting to/from dict
names: list[str] = None
names_file: InitVar[Optional[str]] = None # Pseudo-field: ignored by asdict/fields when converting to/from dict
id: Optional[str] = None
# Automatically constructed
dtype: ClassVar[str] = "int64"
pa_type: ClassVar[Any] = pa.int64()
_str2int: ClassVar[dict[str, int]] = None
_int2str: ClassVar[dict[int, int]] = None
_type: str = field(default="ClassLabel", init=False, repr=False)
def __post_init__(self, num_classes, names_file):
self.num_classes = num_classes
self.names_file = names_file
if self.names_file is not None and self.names is not None:
raise ValueError("Please provide either names or names_file but not both.")
# Set self.names
if self.names is None:
if self.names_file is not None:
self.names = self._load_names_from_file(self.names_file)
elif self.num_classes is not None:
self.names = [str(i) for i in range(self.num_classes)]
else:
raise ValueError("Please provide either num_classes, names or names_file.")
elif not isinstance(self.names, SequenceABC):
raise TypeError(f"Please provide names as a list, is {type(self.names)}")
# Set self.num_classes
if self.num_classes is None:
self.num_classes = len(self.names)
elif self.num_classes != len(self.names):
raise ValueError(
"ClassLabel number of names do not match the defined num_classes. "
f"Got {len(self.names)} names VS {self.num_classes} num_classes"
)
# Prepare mappings
self._int2str = [str(name) for name in self.names]
self._str2int = {name: i for i, name in enumerate(self._int2str)}
if len(self._int2str) != len(self._str2int):
raise ValueError("Some label names are duplicated. Each label name should be unique.")
def __call__(self):
return self.pa_type
def str2int(self, values: Union[str, Iterable]) -> Union[int, Iterable]:
"""Conversion class name `string` => `integer`.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", split="train")
>>> ds.features["label"].str2int('neg')
0
```
"""
if not isinstance(values, str) and not isinstance(values, Iterable):
raise ValueError(
f"Values {values} should be a string or an Iterable (list, numpy array, pytorch, tensorflow tensors)"
)
return_list = True
if isinstance(values, str):
values = [values]
return_list = False
output = [self._strval2int(value) for value in values]
return output if return_list else output[0]
def _strval2int(self, value: str) -> int:
failed_parse = False
value = str(value)
# first attempt - raw string value
int_value = self._str2int.get(value)
if int_value is None:
# second attempt - strip whitespace
int_value = self._str2int.get(value.strip())
if int_value is None:
# third attempt - convert str to int
try:
int_value = int(value)
except ValueError:
failed_parse = True
else:
if int_value < -1 or int_value >= self.num_classes:
failed_parse = True
if failed_parse:
raise ValueError(f"Invalid string class label {value}")
return int_value
def int2str(self, values: Union[int, Iterable]) -> Union[str, Iterable]:
"""Conversion `integer` => class name `string`.
Regarding unknown/missing labels: passing negative integers raises `ValueError`.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", split="train")
>>> ds.features["label"].int2str(0)
'neg'
```
"""
if not isinstance(values, int) and not isinstance(values, Iterable):
raise ValueError(
f"Values {values} should be an integer or an Iterable (list, numpy array, pytorch, tensorflow tensors)"
)
return_list = True
if isinstance(values, int):
values = [values]
return_list = False
for v in values:
if not 0 <= v < self.num_classes:
raise ValueError(f"Invalid integer class label {v:d}")
output = [self._int2str[int(v)] for v in values]
return output if return_list else output[0]
def encode_example(self, example_data):
if self.num_classes is None:
raise ValueError(
"Trying to use ClassLabel feature with undefined number of class. "
"Please set ClassLabel.names or num_classes."
)
# If a string is given, convert to associated integer
if isinstance(example_data, str):
example_data = self.str2int(example_data)
# Allowing -1 to mean no label.
if not -1 <= example_data < self.num_classes:
raise ValueError(f"Class label {example_data:d} greater than configured num_classes {self.num_classes}")
return example_data
def cast_storage(self, storage: Union[pa.StringArray, pa.IntegerArray]) -> pa.Int64Array:
"""Cast an Arrow array to the `ClassLabel` arrow storage type.
The Arrow types that can be converted to the `ClassLabel` pyarrow storage type are:
- `pa.string()`
- `pa.int()`
Args:
storage (`Union[pa.StringArray, pa.IntegerArray]`):
PyArrow array to cast.
Returns:
`pa.Int64Array`: Array in the `ClassLabel` arrow storage type.
"""
if isinstance(storage, pa.IntegerArray) and len(storage) > 0:
min_max = pc.min_max(storage).as_py()
if min_max["max"] is not None and min_max["max"] >= self.num_classes:
raise ValueError(
f"Class label {min_max['max']} greater than configured num_classes {self.num_classes}"
)
elif isinstance(storage, pa.StringArray):
storage = pa.array(
[self._strval2int(label) if label is not None else None for label in storage.to_pylist()]
)
return array_cast(storage, self.pa_type)
@staticmethod
def _load_names_from_file(names_filepath):
with open(names_filepath, encoding="utf-8") as f:
return [name.strip() for name in f.read().split("\n") if name.strip()] # Filter empty names
@dataclass
class Sequence:
"""Construct a list of feature from a single type or a dict of types.
Mostly here for compatiblity with tfds.
Args:
feature ([`FeatureType`]):
A list of features of a single type or a dictionary of types.
length (`int`):
Length of the sequence.
Example:
```py
>>> from datasets import Features, Sequence, Value, ClassLabel
>>> features = Features({'post': Sequence(feature={'text': Value(dtype='string'), 'upvotes': Value(dtype='int32'), 'label': ClassLabel(num_classes=2, names=['hot', 'cold'])})})
>>> features
{'post': Sequence(feature={'text': Value(dtype='string', id=None), 'upvotes': Value(dtype='int32', id=None), 'label': ClassLabel(names=['hot', 'cold'], id=None)}, length=-1, id=None)}
```
"""
feature: Any
length: int = -1
id: Optional[str] = None
# Automatically constructed
dtype: ClassVar[str] = "list"
pa_type: ClassVar[Any] = None
_type: str = field(default="Sequence", init=False, repr=False)
@dataclass
class LargeList:
"""Feature type for large list data composed of child feature data type.
It is backed by `pyarrow.LargeListType`, which is like `pyarrow.ListType` but with 64-bit rather than 32-bit offsets.
Args:
feature ([`FeatureType`]):
Child feature data type of each item within the large list.
"""
feature: Any
id: Optional[str] = None
# Automatically constructed
pa_type: ClassVar[Any] = None
_type: str = field(default="LargeList", init=False, repr=False)
FeatureType = Union[
dict,
list,
tuple,
Value,
ClassLabel,
Translation,
TranslationVariableLanguages,
LargeList,
Sequence,
Array2D,
Array3D,
Array4D,
Array5D,
Audio,
Image,
Video,
Pdf,
]
def _check_non_null_non_empty_recursive(obj, schema: Optional[FeatureType] = None) -> bool:
"""
Check if the object is not None.
If the object is a list or a tuple, recursively check the first element of the sequence and stop if at any point the first element is not a sequence or is an empty sequence.
"""
if obj is None:
return False
elif isinstance(obj, (list, tuple)) and (schema is None or isinstance(schema, (list, tuple, LargeList, Sequence))):
if len(obj) > 0:
if schema is None:
pass
elif isinstance(schema, (list, tuple)):
schema = schema[0]
else:
schema = schema.feature
return _check_non_null_non_empty_recursive(obj[0], schema)
else:
return False
else:
return True
def get_nested_type(schema: FeatureType) -> pa.DataType:
"""
get_nested_type() converts a datasets.FeatureType into a pyarrow.DataType, and acts as the inverse of
generate_from_arrow_type().
It performs double-duty as the implementation of Features.type and handles the conversion of
datasets.Feature->pa.struct
"""
# Nested structures: we allow dict, list/tuples, sequences
if isinstance(schema, Features):
return pa.struct(
{key: get_nested_type(schema[key]) for key in schema}
) # Features is subclass of dict, and dict order is deterministic since Python 3.6
elif isinstance(schema, dict):
return pa.struct(
{key: get_nested_type(schema[key]) for key in schema}
) # however don't sort on struct types since the order matters
elif isinstance(schema, (list, tuple)):
if len(schema) != 1:
raise ValueError("When defining list feature, you should just provide one example of the inner type")
value_type = get_nested_type(schema[0])
return pa.list_(value_type)
elif isinstance(schema, LargeList):
value_type = get_nested_type(schema.feature)
return pa.large_list(value_type)
elif isinstance(schema, Sequence):
value_type = get_nested_type(schema.feature)
# We allow to reverse list of dict => dict of list for compatibility with tfds
if isinstance(schema.feature, dict):
data_type = pa.struct({f.name: pa.list_(f.type, schema.length) for f in value_type})
else:
data_type = pa.list_(value_type, schema.length)
return data_type
# Other objects are callable which returns their data type (ClassLabel, Array2D, Translation, Arrow datatype creation methods)
return schema()
def encode_nested_example(schema, obj, level=0):
"""Encode a nested example.
This is used since some features (in particular ClassLabel) have some logic during encoding.
To avoid iterating over possibly long lists, it first checks (recursively) if the first element that is not None or empty (if it is a sequence) has to be encoded.
If the first element needs to be encoded, then all the elements of the list will be encoded, otherwise they'll stay the same.
"""
# Nested structures: we allow dict, list/tuples, sequences
if isinstance(schema, dict):
if level == 0 and obj is None:
raise ValueError("Got None but expected a dictionary instead")
return (
{k: encode_nested_example(schema[k], obj.get(k), level=level + 1) for k in schema}
if obj is not None
else None
)
elif isinstance(schema, (list, tuple)):
sub_schema = schema[0]
if obj is None:
return None
elif isinstance(obj, np.ndarray):
return encode_nested_example(schema, obj.tolist())
else:
if len(obj) > 0:
for first_elmt in obj:
if _check_non_null_non_empty_recursive(first_elmt, sub_schema):
break
if encode_nested_example(sub_schema, first_elmt, level=level + 1) != first_elmt:
return [encode_nested_example(sub_schema, o, level=level + 1) for o in obj]
return list(obj)
elif isinstance(schema, LargeList):
if obj is None:
return None
else:
if len(obj) > 0:
sub_schema = schema.feature
for first_elmt in obj:
if _check_non_null_non_empty_recursive(first_elmt, sub_schema):
break
if encode_nested_example(sub_schema, first_elmt, level=level + 1) != first_elmt:
return [encode_nested_example(sub_schema, o, level=level + 1) for o in obj]
return list(obj)
elif isinstance(schema, Sequence):
if obj is None:
return None
# We allow to reverse list of dict => dict of list for compatibility with tfds
if isinstance(schema.feature, dict):
# dict of list to fill
list_dict = {}
if isinstance(obj, (list, tuple)):
# obj is a list of dict
for k in schema.feature:
list_dict[k] = [encode_nested_example(schema.feature[k], o.get(k), level=level + 1) for o in obj]
return list_dict
else:
# obj is a single dict
for k in schema.feature:
list_dict[k] = (
[encode_nested_example(schema.feature[k], o, level=level + 1) for o in obj[k]]
if k in obj
else None
)
return list_dict
# schema.feature is not a dict
if isinstance(obj, str): # don't interpret a string as a list
raise ValueError(f"Got a string but expected a list instead: '{obj}'")
else:
if len(obj) > 0:
for first_elmt in obj:
if _check_non_null_non_empty_recursive(first_elmt, schema.feature):
break
# be careful when comparing tensors here
if (
not (isinstance(first_elmt, list) or np.isscalar(first_elmt))
or encode_nested_example(schema.feature, first_elmt, level=level + 1) != first_elmt
):
return [encode_nested_example(schema.feature, o, level=level + 1) for o in obj]
return list(obj)
# Object with special encoding:
# ClassLabel will convert from string to int, TranslationVariableLanguages does some checks
elif hasattr(schema, "encode_example"):
return schema.encode_example(obj) if obj is not None else None
# Other object should be directly convertible to a native Arrow type (like Translation and Translation)
return obj
def decode_nested_example(schema, obj, token_per_repo_id: Optional[dict[str, Union[str, bool, None]]] = None):
"""Decode a nested example.
This is used since some features (in particular Audio and Image) have some logic during decoding.
To avoid iterating over possibly long lists, it first checks (recursively) if the first element that is not None or empty (if it is a sequence) has to be decoded.
If the first element needs to be decoded, then all the elements of the list will be decoded, otherwise they'll stay the same.
"""
# Nested structures: we allow dict, list/tuples, sequences
if isinstance(schema, dict):
return (
{k: decode_nested_example(sub_schema, sub_obj) for k, (sub_schema, sub_obj) in zip_dict(schema, obj)}
if obj is not None
else None
)
elif isinstance(schema, (list, tuple)):
sub_schema = schema[0]
if obj is None:
return None
else:
if len(obj) > 0:
for first_elmt in obj:
if _check_non_null_non_empty_recursive(first_elmt, sub_schema):
break
if decode_nested_example(sub_schema, first_elmt) != first_elmt:
return [decode_nested_example(sub_schema, o) for o in obj]
return list(obj)
elif isinstance(schema, LargeList):
if obj is None:
return None
else:
sub_schema = schema.feature
if len(obj) > 0:
for first_elmt in obj:
if _check_non_null_non_empty_recursive(first_elmt, sub_schema):
break
if decode_nested_example(sub_schema, first_elmt) != first_elmt:
return [decode_nested_example(sub_schema, o) for o in obj]
return list(obj)
elif isinstance(schema, Sequence):
# We allow to reverse list of dict => dict of list for compatibility with tfds
if isinstance(schema.feature, dict):
return {k: decode_nested_example([schema.feature[k]], obj[k]) for k in schema.feature}
else:
return decode_nested_example([schema.feature], obj)
# Object with special decoding:
elif hasattr(schema, "decode_example") and getattr(schema, "decode", True):
# we pass the token to read and decode files from private repositories in streaming mode
return schema.decode_example(obj, token_per_repo_id=token_per_repo_id) if obj is not None else None
return obj
_FEATURE_TYPES: dict[str, FeatureType] = {
Value.__name__: Value,
ClassLabel.__name__: ClassLabel,
Translation.__name__: Translation,
TranslationVariableLanguages.__name__: TranslationVariableLanguages,
LargeList.__name__: LargeList,
Sequence.__name__: Sequence,
Array2D.__name__: Array2D,
Array3D.__name__: Array3D,
Array4D.__name__: Array4D,
Array5D.__name__: Array5D,
Audio.__name__: Audio,
Image.__name__: Image,
Video.__name__: Video,
Pdf.__name__: Pdf,
}
@experimental
def register_feature(
feature_cls: type,
feature_type: str,
):
"""
Register a Feature object using a name and class.
This function must be used on a Feature class.
"""
if feature_type in _FEATURE_TYPES:
logger.warning(
f"Overwriting feature type '{feature_type}' ({_FEATURE_TYPES[feature_type].__name__} -> {feature_cls.__name__})"
)
_FEATURE_TYPES[feature_type] = feature_cls
def generate_from_dict(obj: Any):
"""Regenerate the nested feature object from a deserialized dict.
We use the '_type' fields to get the dataclass name to load.
generate_from_dict is the recursive helper for Features.from_dict, and allows for a convenient constructor syntax
to define features from deserialized JSON dictionaries. This function is used in particular when deserializing
a :class:`DatasetInfo` that was dumped to a JSON object. This acts as an analogue to
:meth:`Features.from_arrow_schema` and handles the recursive field-by-field instantiation, but doesn't require any
mapping to/from pyarrow, except for the fact that it takes advantage of the mapping of pyarrow primitive dtypes
that :class:`Value` automatically performs.
"""
# Nested structures: we allow dict, list/tuples, sequences
if isinstance(obj, list):
return [generate_from_dict(value) for value in obj]
# Otherwise we have a dict or a dataclass
if "_type" not in obj or isinstance(obj["_type"], dict):
return {key: generate_from_dict(value) for key, value in obj.items()}
obj = dict(obj)
_type = obj.pop("_type")
class_type = _FEATURE_TYPES.get(_type, None) or globals().get(_type, None)
if class_type is None:
raise ValueError(f"Feature type '{_type}' not found. Available feature types: {list(_FEATURE_TYPES.keys())}")
if class_type == LargeList:
feature = obj.pop("feature")
return LargeList(feature=generate_from_dict(feature), **obj)
if class_type == Sequence:
feature = obj.pop("feature")
return Sequence(feature=generate_from_dict(feature), **obj)
field_names = {f.name for f in fields(class_type)}
return class_type(**{k: v for k, v in obj.items() if k in field_names})
def generate_from_arrow_type(pa_type: pa.DataType) -> FeatureType:
"""
generate_from_arrow_type accepts an arrow DataType and returns a datasets FeatureType to be used as the type for
a single field.
This is the high-level arrow->datasets type conversion and is inverted by get_nested_type().
This operates at the individual *field* level, whereas Features.from_arrow_schema() operates at the
full schema level and holds the methods that represent the bijection from Features<->pyarrow.Schema
"""
if isinstance(pa_type, pa.StructType):
return {field.name: generate_from_arrow_type(field.type) for field in pa_type}
elif isinstance(pa_type, pa.FixedSizeListType):
return Sequence(feature=generate_from_arrow_type(pa_type.value_type), length=pa_type.list_size)
elif isinstance(pa_type, pa.ListType):
feature = generate_from_arrow_type(pa_type.value_type)
if isinstance(feature, (dict, tuple, list)):
return [feature]
return Sequence(feature=feature)
elif isinstance(pa_type, pa.LargeListType):
feature = generate_from_arrow_type(pa_type.value_type)
return LargeList(feature=feature)
elif isinstance(pa_type, _ArrayXDExtensionType):
array_feature = [None, None, Array2D, Array3D, Array4D, Array5D][pa_type.ndims]
return array_feature(shape=pa_type.shape, dtype=pa_type.value_type)
elif isinstance(pa_type, pa.DataType):
return Value(dtype=_arrow_to_datasets_dtype(pa_type))
else:
raise ValueError(f"Cannot convert {pa_type} to a Feature type.")
def numpy_to_pyarrow_listarray(arr: np.ndarray, type: pa.DataType = None) -> pa.ListArray:
"""Build a PyArrow ListArray from a multidimensional NumPy array"""
arr = np.array(arr)
values = pa.array(arr.flatten(), type=type)
for i in range(arr.ndim - 1):
n_offsets = reduce(mul, arr.shape[: arr.ndim - i - 1], 1)
step_offsets = arr.shape[arr.ndim - i - 1]
offsets = pa.array(np.arange(n_offsets + 1) * step_offsets, type=pa.int32())
values = pa.ListArray.from_arrays(offsets, values)
return values
def list_of_pa_arrays_to_pyarrow_listarray(l_arr: list[Optional[pa.Array]]) -> pa.ListArray:
null_mask = np.array([arr is None for arr in l_arr])
null_indices = np.arange(len(null_mask))[null_mask] - np.arange(np.sum(null_mask))
l_arr = [arr for arr in l_arr if arr is not None]
offsets = np.cumsum(
[0] + [len(arr) for arr in l_arr], dtype=object
) # convert to dtype object to allow None insertion
offsets = np.insert(offsets, null_indices, None)
offsets = pa.array(offsets, type=pa.int32())
values = pa.concat_arrays(l_arr)
return pa.ListArray.from_arrays(offsets, values)
def list_of_np_array_to_pyarrow_listarray(l_arr: list[np.ndarray], type: pa.DataType = None) -> pa.ListArray:
"""Build a PyArrow ListArray from a possibly nested list of NumPy arrays"""
if len(l_arr) > 0:
return list_of_pa_arrays_to_pyarrow_listarray(
[numpy_to_pyarrow_listarray(arr, type=type) if arr is not None else None for arr in l_arr]
)
else:
return pa.array([], type=type)
def contains_any_np_array(data: Any):
"""Return `True` if data is a NumPy ndarray or (recursively) if first non-null value in list is a NumPy ndarray.
Args:
data (Any): Data.
Returns:
bool
"""
if isinstance(data, np.ndarray):
return True
elif isinstance(data, list):
return contains_any_np_array(first_non_null_value(data)[1])
else:
return False
def any_np_array_to_pyarrow_listarray(data: Union[np.ndarray, list], type: pa.DataType = None) -> pa.ListArray:
"""Convert to PyArrow ListArray either a NumPy ndarray or (recursively) a list that may contain any NumPy ndarray.
Args:
data (Union[np.ndarray, List]): Data.
type (pa.DataType): Explicit PyArrow DataType passed to coerce the ListArray data type.
Returns:
pa.ListArray
"""
if isinstance(data, np.ndarray):
return numpy_to_pyarrow_listarray(data, type=type)
elif isinstance(data, list):
return list_of_pa_arrays_to_pyarrow_listarray([any_np_array_to_pyarrow_listarray(i, type=type) for i in data])
def to_pyarrow_listarray(data: Any, pa_type: _ArrayXDExtensionType) -> pa.Array:
"""Convert to PyArrow ListArray.
Args:
data (Any): Sequence, iterable, np.ndarray or pd.Series.
pa_type (_ArrayXDExtensionType): Any of the ArrayNDExtensionType.
Returns:
pyarrow.Array
"""
if contains_any_np_array(data):
return any_np_array_to_pyarrow_listarray(data, type=pa_type.value_type)
else:
return pa.array(data, pa_type.storage_dtype)
def _visit(feature: FeatureType, func: Callable[[FeatureType], Optional[FeatureType]]) -> FeatureType:
"""Visit a (possibly nested) feature.
Args:
feature (FeatureType): the feature type to be checked
Returns:
visited feature (FeatureType)
"""
if isinstance(feature, Features):
out = func(Features({k: _visit(f, func) for k, f in feature.items()}))
elif isinstance(feature, dict):
out = func({k: _visit(f, func) for k, f in feature.items()})
elif isinstance(feature, (list, tuple)):
out = func([_visit(feature[0], func)])
elif isinstance(feature, LargeList):
out = func(LargeList(_visit(feature.feature, func)))
elif isinstance(feature, Sequence):
out = func(Sequence(_visit(feature.feature, func), length=feature.length))
else:
out = func(feature)
return feature if out is None else out
_VisitPath = list[Union[str, Literal[0]]]
def _visit_with_path(
feature: FeatureType, func: Callable[[FeatureType, _VisitPath], Optional[FeatureType]], visit_path: _VisitPath = []
) -> FeatureType:
"""Visit a (possibly nested) feature with its path in the Feature object.
A path in a nested feature object is the list of keys that need to be
sequentially accessed to get to the sub-feature.
For example:
- ["foo"] corresponds to the column "foo"
- ["foo", 0] corresponds to the sub-feature of the lists in "foo"
- ["foo", "bar"] corresponds to the sub-feature of the dicts in "foo" with key "bar"
Args:
feature (`FeatureType`): the feature type to be checked.
Returns:
`FeatureType`: the visited feature.
"""
if isinstance(feature, Sequence) and isinstance(feature.feature, dict):
feature = {k: [f] for k, f in feature.feature.items()}
# ^ Sequence of dicts is special, it must be converted to a dict of lists (see https://huggingface.co/docs/datasets/v2.16.1/en/package_reference/main_classes#datasets.Features)
if isinstance(feature, Features):
out = func(Features({k: _visit_with_path(f, func, visit_path + [k]) for k, f in feature.items()}), visit_path)
elif isinstance(feature, dict):
out = func({k: _visit_with_path(f, func, visit_path + [k]) for k, f in feature.items()}, visit_path)
elif isinstance(feature, (list, tuple)):
out = func([_visit_with_path(feature[0], func, visit_path + [0])], visit_path)
elif isinstance(feature, Sequence):
out = func(
Sequence(_visit_with_path(feature.feature, func, visit_path + [0]), length=feature.length), visit_path
)
elif isinstance(feature, LargeList):
out = func(LargeList(_visit_with_path(feature.feature, func, visit_path + [0])), visit_path)
else:
out = func(feature, visit_path)
return feature if out is None else out
def require_decoding(feature: FeatureType, ignore_decode_attribute: bool = False) -> bool:
"""Check if a (possibly nested) feature requires decoding.
Args:
feature (FeatureType): the feature type to be checked
ignore_decode_attribute (:obj:`bool`, default ``False``): Whether to ignore the current value
of the `decode` attribute of the decodable feature types.
Returns:
:obj:`bool`
"""
if isinstance(feature, dict):
return any(require_decoding(f) for f in feature.values())
elif isinstance(feature, (list, tuple)):
return require_decoding(feature[0])
elif isinstance(feature, LargeList):
return require_decoding(feature.feature)
elif isinstance(feature, Sequence):
return require_decoding(feature.feature)
else:
return hasattr(feature, "decode_example") and (
getattr(feature, "decode", True) if not ignore_decode_attribute else True
)
def require_storage_cast(feature: FeatureType) -> bool:
"""Check if a (possibly nested) feature requires storage casting.
Args:
feature (FeatureType): the feature type to be checked
Returns:
:obj:`bool`
"""
if isinstance(feature, dict):
return any(require_storage_cast(f) for f in feature.values())
elif isinstance(feature, (list, tuple)):
return require_storage_cast(feature[0])
elif isinstance(feature, LargeList):
return require_storage_cast(feature.feature)
elif isinstance(feature, Sequence):
return require_storage_cast(feature.feature)
else:
return hasattr(feature, "cast_storage")
def require_storage_embed(feature: FeatureType) -> bool:
"""Check if a (possibly nested) feature requires embedding data into storage.
Args:
feature (FeatureType): the feature type to be checked
Returns:
:obj:`bool`
"""
if isinstance(feature, dict):
return any(require_storage_cast(f) for f in feature.values())
elif isinstance(feature, (list, tuple)):
return require_storage_cast(feature[0])
elif isinstance(feature, LargeList):
return require_storage_cast(feature.feature)
elif isinstance(feature, Sequence):
return require_storage_cast(feature.feature)
else:
return hasattr(feature, "embed_storage")
def keep_features_dicts_synced(func):
"""
Wrapper to keep the secondary dictionary, which tracks whether keys are decodable, of the :class:`datasets.Features` object
in sync with the main dictionary.
"""
@wraps(func)
def wrapper(*args, **kwargs):
if args:
self: "Features" = args[0]
args = args[1:]
else:
self: "Features" = kwargs.pop("self")
out = func(self, *args, **kwargs)
assert hasattr(self, "_column_requires_decoding")
self._column_requires_decoding = {col: require_decoding(feature) for col, feature in self.items()}
return out
wrapper._decorator_name_ = "_keep_dicts_synced"
return wrapper
class Features(dict):
"""A special dictionary that defines the internal structure of a dataset.
Instantiated with a dictionary of type `dict[str, FieldType]`, where keys are the desired column names,
and values are the type of that column.
`FieldType` can be one of the following:
- [`Value`] feature specifies a single data type value, e.g. `int64` or `string`.
- [`ClassLabel`] feature specifies a predefined set of classes which can have labels associated to them and
will be stored as integers in the dataset.
- Python `dict` specifies a composite feature containing a mapping of sub-fields to sub-features.
It's possible to have nested fields of nested fields in an arbitrary manner.
- Python `list`, [`LargeList`] or [`Sequence`] specifies a composite feature containing a sequence of
sub-features, all of the same feature type.
<Tip>
A [`Sequence`] with an internal dictionary feature will be automatically converted into a dictionary of
lists. This behavior is implemented to have a compatibility layer with the TensorFlow Datasets library but may be
un-wanted in some cases. If you don't want this behavior, you can use a Python `list` or a [`LargeList`]
instead of the [`Sequence`].
</Tip>
- [`Array2D`], [`Array3D`], [`Array4D`] or [`Array5D`] feature for multidimensional arrays.
- [`Audio`] feature to store the absolute path to an audio file or a dictionary with the relative path
to an audio file ("path" key) and its bytes content ("bytes" key). This feature extracts the audio data.
- [`Image`] feature to store the absolute path to an image file, an `np.ndarray` object, a `PIL.Image.Image` object
or a dictionary with the relative path to an image file ("path" key) and its bytes content ("bytes" key).
This feature extracts the image data.
- [`Translation`] or [`TranslationVariableLanguages`] feature specific to Machine Translation.
"""
def __init__(*args, **kwargs):
# self not in the signature to allow passing self as a kwarg
if not args:
raise TypeError("descriptor '__init__' of 'Features' object needs an argument")
self, *args = args
super(Features, self).__init__(*args, **kwargs)
self._column_requires_decoding: dict[str, bool] = {
col: require_decoding(feature) for col, feature in self.items()
}
__setitem__ = keep_features_dicts_synced(dict.__setitem__)
__delitem__ = keep_features_dicts_synced(dict.__delitem__)
update = keep_features_dicts_synced(dict.update)
setdefault = keep_features_dicts_synced(dict.setdefault)
pop = keep_features_dicts_synced(dict.pop)
popitem = keep_features_dicts_synced(dict.popitem)
clear = keep_features_dicts_synced(dict.clear)
def __reduce__(self):
return Features, (dict(self),)
@property
def type(self):
"""
Features field types.
Returns:
:obj:`pyarrow.DataType`
"""
return get_nested_type(self)
@property
def arrow_schema(self):
"""
Features schema.
Returns:
:obj:`pyarrow.Schema`
"""
hf_metadata = {"info": {"features": self.to_dict()}}
return pa.schema(self.type).with_metadata({"huggingface": json.dumps(hf_metadata)})
@classmethod
def from_arrow_schema(cls, pa_schema: pa.Schema) -> "Features":
"""
Construct [`Features`] from Arrow Schema.
It also checks the schema metadata for Hugging Face Datasets features.
Non-nullable fields are not supported and set to nullable.
Also, pa.dictionary is not supported and it uses its underlying type instead.
Therefore datasets convert DictionaryArray objects to their actual values.
Args:
pa_schema (`pyarrow.Schema`):
Arrow Schema.
Returns:
[`Features`]
"""
# try to load features from the arrow schema metadata
metadata_features = Features()
if pa_schema.metadata is not None and b"huggingface" in pa_schema.metadata:
metadata = json.loads(pa_schema.metadata[b"huggingface"].decode())
if "info" in metadata and "features" in metadata["info"] and metadata["info"]["features"] is not None:
metadata_features = Features.from_dict(metadata["info"]["features"])
metadata_features_schema = metadata_features.arrow_schema
obj = {
field.name: (
metadata_features[field.name]
if field.name in metadata_features and metadata_features_schema.field(field.name) == field
else generate_from_arrow_type(field.type)
)
for field in pa_schema
}
return cls(**obj)
@classmethod
def from_dict(cls, dic) -> "Features":
"""
Construct [`Features`] from dict.
Regenerate the nested feature object from a deserialized dict.
We use the `_type` key to infer the dataclass name of the feature `FieldType`.
It allows for a convenient constructor syntax
to define features from deserialized JSON dictionaries. This function is used in particular when deserializing
a [`DatasetInfo`] that was dumped to a JSON object. This acts as an analogue to
[`Features.from_arrow_schema`] and handles the recursive field-by-field instantiation, but doesn't require
any mapping to/from pyarrow, except for the fact that it takes advantage of the mapping of pyarrow primitive
dtypes that [`Value`] automatically performs.
Args:
dic (`dict[str, Any]`):
Python dictionary.
Returns:
`Features`
Example::
>>> Features.from_dict({'_type': {'dtype': 'string', 'id': None, '_type': 'Value'}})
{'_type': Value(dtype='string', id=None)}
"""
obj = generate_from_dict(dic)
return cls(**obj)
def to_dict(self):
return asdict(self)
def _to_yaml_list(self) -> list:
# we compute the YAML list from the dict representation that is used for JSON dump
yaml_data = self.to_dict()
def simplify(feature: dict) -> dict:
if not isinstance(feature, dict):
raise TypeError(f"Expected a dict but got a {type(feature)}: {feature}")
for list_type in ["large_list", "list", "sequence"]:
#
# list_type: -> list_type: int32
# dtype: int32 ->
#
if isinstance(feature.get(list_type), dict) and list(feature[list_type]) == ["dtype"]:
feature[list_type] = feature[list_type]["dtype"]
#
# list_type: -> list_type:
# struct: -> - name: foo
# - name: foo -> dtype: int32
# dtype: int32 ->
#
if isinstance(feature.get(list_type), dict) and list(feature[list_type]) == ["struct"]:
feature[list_type] = feature[list_type]["struct"]
#
# class_label: -> class_label:
# names: -> names:
# - negative -> '0': negative
# - positive -> '1': positive
#
if isinstance(feature.get("class_label"), dict) and isinstance(feature["class_label"].get("names"), list):
# server-side requirement: keys must be strings
feature["class_label"]["names"] = {
str(label_id): label_name for label_id, label_name in enumerate(feature["class_label"]["names"])
}
return feature
def to_yaml_inner(obj: Union[dict, list]) -> dict:
if isinstance(obj, dict):
_type = obj.pop("_type", None)
if _type == "LargeList":
_feature = obj.pop("feature")
return simplify({"large_list": to_yaml_inner(_feature), **obj})
elif _type == "Sequence":
_feature = obj.pop("feature")
return simplify({"sequence": to_yaml_inner(_feature), **obj})
elif _type == "Value":
return obj
elif _type and not obj:
return {"dtype": camelcase_to_snakecase(_type)}
elif _type:
return {"dtype": simplify({camelcase_to_snakecase(_type): obj})}
else:
return {"struct": [{"name": name, **to_yaml_inner(_feature)} for name, _feature in obj.items()]}
elif isinstance(obj, list):
return simplify({"list": simplify(to_yaml_inner(obj[0]))})
elif isinstance(obj, tuple):
return to_yaml_inner(list(obj))
else:
raise TypeError(f"Expected a dict or a list but got {type(obj)}: {obj}")
def to_yaml_types(obj: dict) -> dict:
if isinstance(obj, dict):
return {k: to_yaml_types(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [to_yaml_types(v) for v in obj]
elif isinstance(obj, tuple):
return to_yaml_types(list(obj))
else:
return obj
return to_yaml_types(to_yaml_inner(yaml_data)["struct"])
@classmethod
def _from_yaml_list(cls, yaml_data: list) -> "Features":
yaml_data = copy.deepcopy(yaml_data)
# we convert the list obtained from YAML data into the dict representation that is used for JSON dump
def unsimplify(feature: dict) -> dict:
if not isinstance(feature, dict):
raise TypeError(f"Expected a dict but got a {type(feature)}: {feature}")
for list_type in ["large_list", "list", "sequence"]:
#
# list_type: int32 -> list_type:
# -> dtype: int32
#
if isinstance(feature.get(list_type), str):
feature[list_type] = {"dtype": feature[list_type]}
#
# class_label: -> class_label:
# names: -> names:
# '0': negative -> - negative
# '1': positive -> - positive
#
if isinstance(feature.get("class_label"), dict) and isinstance(feature["class_label"].get("names"), dict):
label_ids = sorted(feature["class_label"]["names"], key=int)
if label_ids and [int(label_id) for label_id in label_ids] != list(range(int(label_ids[-1]) + 1)):
raise ValueError(
f"ClassLabel expected a value for all label ids [0:{int(label_ids[-1]) + 1}] but some ids are missing."
)
feature["class_label"]["names"] = [feature["class_label"]["names"][label_id] for label_id in label_ids]
return feature
def from_yaml_inner(obj: Union[dict, list]) -> Union[dict, list]:
if isinstance(obj, dict):
if not obj:
return {}
_type = next(iter(obj))
if _type == "large_list":
_feature = unsimplify(obj).pop(_type)
return {"feature": from_yaml_inner(_feature), **obj, "_type": "LargeList"}
if _type == "sequence":
_feature = unsimplify(obj).pop(_type)
return {"feature": from_yaml_inner(_feature), **obj, "_type": "Sequence"}
if _type == "list":
return [from_yaml_inner(unsimplify(obj)[_type])]
if _type == "struct":
return from_yaml_inner(obj["struct"])
elif _type == "dtype":
if isinstance(obj["dtype"], str):
# e.g. int32, float64, string, audio, image
try:
Value(obj["dtype"])
return {**obj, "_type": "Value"}
except ValueError:
# e.g. Audio, Image, ArrayXD
return {"_type": snakecase_to_camelcase(obj["dtype"])}
else:
return from_yaml_inner(obj["dtype"])
else:
return {"_type": snakecase_to_camelcase(_type), **unsimplify(obj)[_type]}
elif isinstance(obj, list):
names = [_feature.pop("name") for _feature in obj]
return {name: from_yaml_inner(_feature) for name, _feature in zip(names, obj)}
else:
raise TypeError(f"Expected a dict or a list but got {type(obj)}: {obj}")
return cls.from_dict(from_yaml_inner(yaml_data))
def encode_example(self, example):
"""
Encode example into a format for Arrow.
Args:
example (`dict[str, Any]`):
Data in a Dataset row.
Returns:
`dict[str, Any]`
"""
example = cast_to_python_objects(example)
return encode_nested_example(self, example)
def encode_column(self, column, column_name: str):
"""
Encode column into a format for Arrow.
Args:
column (`list[Any]`):
Data in a Dataset column.
column_name (`str`):
Dataset column name.
Returns:
`list[Any]`
"""
column = cast_to_python_objects(column)
return [encode_nested_example(self[column_name], obj, level=1) for obj in column]
def encode_batch(self, batch):
"""
Encode batch into a format for Arrow.
Args:
batch (`dict[str, list[Any]]`):
Data in a Dataset batch.
Returns:
`dict[str, list[Any]]`
"""
encoded_batch = {}
if set(batch) != set(self):
raise ValueError(f"Column mismatch between batch {set(batch)} and features {set(self)}")
for key, column in batch.items():
column = cast_to_python_objects(column)
encoded_batch[key] = [encode_nested_example(self[key], obj, level=1) for obj in column]
return encoded_batch
def decode_example(self, example: dict, token_per_repo_id: Optional[dict[str, Union[str, bool, None]]] = None):
"""Decode example with custom feature decoding.
Args:
example (`dict[str, Any]`):
Dataset row data.
token_per_repo_id (`dict`, *optional*):
To access and decode audio or image files from private repositories on the Hub, you can pass
a dictionary `repo_id (str) -> token (bool or str)`.
Returns:
`dict[str, Any]`
"""
return {
column_name: decode_nested_example(feature, value, token_per_repo_id=token_per_repo_id)
if self._column_requires_decoding[column_name]
else value
for column_name, (feature, value) in zip_dict(
{key: value for key, value in self.items() if key in example}, example
)
}
def decode_column(self, column: list, column_name: str):
"""Decode column with custom feature decoding.
Args:
column (`list[Any]`):
Dataset column data.
column_name (`str`):
Dataset column name.
Returns:
`list[Any]`
"""
return (
[decode_nested_example(self[column_name], value) if value is not None else None for value in column]
if self._column_requires_decoding[column_name]
else column
)
def decode_batch(self, batch: dict, token_per_repo_id: Optional[dict[str, Union[str, bool, None]]] = None):
"""Decode batch with custom feature decoding.
Args:
batch (`dict[str, list[Any]]`):
Dataset batch data.
token_per_repo_id (`dict`, *optional*):
To access and decode audio or image files from private repositories on the Hub, you can pass
a dictionary repo_id (str) -> token (bool or str)
Returns:
`dict[str, list[Any]]`
"""
decoded_batch = {}
for column_name, column in batch.items():
decoded_batch[column_name] = (
[
decode_nested_example(self[column_name], value, token_per_repo_id=token_per_repo_id)
if value is not None
else None
for value in column
]
if self._column_requires_decoding[column_name]
else column
)
return decoded_batch
def copy(self) -> "Features":
"""
Make a deep copy of [`Features`].
Returns:
[`Features`]
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", split="train")
>>> copy_of_features = ds.features.copy()
>>> copy_of_features
{'label': ClassLabel(names=['neg', 'pos'], id=None),
'text': Value(dtype='string', id=None)}
```
"""
return copy.deepcopy(self)
def reorder_fields_as(self, other: "Features") -> "Features":
"""
Reorder Features fields to match the field order of other [`Features`].
The order of the fields is important since it matters for the underlying arrow data.
Re-ordering the fields allows to make the underlying arrow data type match.
Args:
other ([`Features`]):
The other [`Features`] to align with.
Returns:
[`Features`]
Example::
>>> from datasets import Features, Sequence, Value
>>> # let's say we have two features with a different order of nested fields (for a and b for example)
>>> f1 = Features({"root": Sequence({"a": Value("string"), "b": Value("string")})})
>>> f2 = Features({"root": {"b": Sequence(Value("string")), "a": Sequence(Value("string"))}})
>>> assert f1.type != f2.type
>>> # re-ordering keeps the base structure (here Sequence is defined at the root level), but makes the fields order match
>>> f1.reorder_fields_as(f2)
{'root': Sequence(feature={'b': Value(dtype='string', id=None), 'a': Value(dtype='string', id=None)}, length=-1, id=None)}
>>> assert f1.reorder_fields_as(f2).type == f2.type
"""
def recursive_reorder(source, target, stack=""):
stack_position = " at " + stack[1:] if stack else ""
if isinstance(target, Sequence):
target = target.feature
if isinstance(target, dict):
target = {k: [v] for k, v in target.items()}
else:
target = [target]
if isinstance(source, Sequence):
sequence_kwargs = vars(source).copy()
source = sequence_kwargs.pop("feature")
if isinstance(source, dict):
source = {k: [v] for k, v in source.items()}
reordered = recursive_reorder(source, target, stack)
return Sequence({k: v[0] for k, v in reordered.items()}, **sequence_kwargs)
else:
source = [source]
reordered = recursive_reorder(source, target, stack)
return Sequence(reordered[0], **sequence_kwargs)
elif isinstance(source, dict):
if not isinstance(target, dict):
raise ValueError(f"Type mismatch: between {source} and {target}" + stack_position)
if sorted(source) != sorted(target):
message = (
f"Keys mismatch: between {source} (source) and {target} (target).\n"
f"{source.keys() - target.keys()} are missing from target "
f"and {target.keys() - source.keys()} are missing from source" + stack_position
)
raise ValueError(message)
return {key: recursive_reorder(source[key], target[key], stack + f".{key}") for key in target}
elif isinstance(source, list):
if not isinstance(target, list):
raise ValueError(f"Type mismatch: between {source} and {target}" + stack_position)
if len(source) != len(target):
raise ValueError(f"Length mismatch: between {source} and {target}" + stack_position)
return [recursive_reorder(source[i], target[i], stack + ".<list>") for i in range(len(target))]
elif isinstance(source, LargeList):
if not isinstance(target, LargeList):
raise ValueError(f"Type mismatch: between {source} and {target}" + stack_position)
return LargeList(recursive_reorder(source.feature, target.feature, stack))
else:
return source
return Features(recursive_reorder(self, other))
def flatten(self, max_depth=16) -> "Features":
"""Flatten the features. Every dictionary column is removed and is replaced by
all the subfields it contains. The new fields are named by concatenating the
name of the original column and the subfield name like this: `<original>.<subfield>`.
If a column contains nested dictionaries, then all the lower-level subfields names are
also concatenated to form new columns: `<original>.<subfield>.<subsubfield>`, etc.
Returns:
[`Features`]:
The flattened features.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rajpurkar/squad", split="train")
>>> ds.features.flatten()
{'answers.answer_start': Sequence(feature=Value(dtype='int32', id=None), length=-1, id=None),
'answers.text': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None),
'context': Value(dtype='string', id=None),
'id': Value(dtype='string', id=None),
'question': Value(dtype='string', id=None),
'title': Value(dtype='string', id=None)}
```
"""
for depth in range(1, max_depth):
no_change = True
flattened = self.copy()
for column_name, subfeature in self.items():
if isinstance(subfeature, dict):
no_change = False
flattened.update({f"{column_name}.{k}": v for k, v in subfeature.items()})
del flattened[column_name]
elif isinstance(subfeature, Sequence) and isinstance(subfeature.feature, dict):
no_change = False
flattened.update(
{
f"{column_name}.{k}": Sequence(v) if not isinstance(v, dict) else [v]
for k, v in subfeature.feature.items()
}
)
del flattened[column_name]
elif hasattr(subfeature, "flatten") and subfeature.flatten() != subfeature:
no_change = False
flattened.update({f"{column_name}.{k}": v for k, v in subfeature.flatten().items()})
del flattened[column_name]
self = flattened
if no_change:
break
return self
def _align_features(features_list: list[Features]) -> list[Features]:
"""Align dictionaries of features so that the keys that are found in multiple dictionaries share the same feature."""
name2feature = {}
for features in features_list:
for k, v in features.items():
if k in name2feature and isinstance(v, dict):
# Recursively align features.
name2feature[k] = _align_features([name2feature[k], v])[0]
elif k not in name2feature or (isinstance(name2feature[k], Value) and name2feature[k].dtype == "null"):
name2feature[k] = v
return [Features({k: name2feature[k] for k in features.keys()}) for features in features_list]
def _check_if_features_can_be_aligned(features_list: list[Features]):
"""Check if the dictionaries of features can be aligned.
Two dictonaries of features can be aligned if the keys they share have the same type or some of them is of type `Value("null")`.
"""
name2feature = {}
for features in features_list:
for k, v in features.items():
if k not in name2feature or (isinstance(name2feature[k], Value) and name2feature[k].dtype == "null"):
name2feature[k] = v
for features in features_list:
for k, v in features.items():
if isinstance(v, dict) and isinstance(name2feature[k], dict):
# Deep checks for structure.
_check_if_features_can_be_aligned([name2feature[k], v])
elif not (isinstance(v, Value) and v.dtype == "null") and name2feature[k] != v:
raise ValueError(
f'The features can\'t be aligned because the key {k} of features {features} has unexpected type - {v} (expected either {name2feature[k]} or Value("null").'
)
|