File size: 12,209 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import os
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Optional, Union

import numpy as np
import pyarrow as pa

from .. import config
from ..download.download_config import DownloadConfig
from ..table import array_cast
from ..utils.file_utils import xopen, xsplitext
from ..utils.py_utils import no_op_if_value_is_null, string_to_dict


if TYPE_CHECKING:
    from .features import FeatureType


@dataclass
class Audio:
    """Audio [`Feature`] to extract audio data from an audio file.

    Input: The Audio feature accepts as input:
    - A `str`: Absolute path to the audio file (i.e. random access is allowed).
    - A `dict` with the keys:

        - `path`: String with relative path of the audio file to the archive file.
        - `bytes`: Bytes content of the audio file.

      This is useful for archived files with sequential access.

    - A `dict` with the keys:

        - `path`: String with relative path of the audio file to the archive file.
        - `array`: Array containing the audio sample
        - `sampling_rate`: Integer corresponding to the sampling rate of the audio sample.

      This is useful for archived files with sequential access.

    Args:
        sampling_rate (`int`, *optional*):
            Target sampling rate. If `None`, the native sampling rate is used.
        mono (`bool`, defaults to `True`):
            Whether to convert the audio signal to mono by averaging samples across
            channels.
        decode (`bool`, defaults to `True`):
            Whether to decode the audio data. If `False`,
            returns the underlying dictionary in the format `{"path": audio_path, "bytes": audio_bytes}`.

    Example:

    ```py
    >>> from datasets import load_dataset, Audio
    >>> ds = load_dataset("PolyAI/minds14", name="en-US", split="train")
    >>> ds = ds.cast_column("audio", Audio(sampling_rate=16000))
    >>> ds[0]["audio"]
    {'array': array([ 2.3443763e-05,  2.1729663e-04,  2.2145823e-04, ...,
         3.8356509e-05, -7.3497440e-06, -2.1754686e-05], dtype=float32),
     'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav',
     'sampling_rate': 16000}
    ```
    """

    sampling_rate: Optional[int] = None
    mono: bool = True
    decode: bool = True
    id: Optional[str] = None
    # Automatically constructed
    dtype: ClassVar[str] = "dict"
    pa_type: ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()})
    _type: str = field(default="Audio", init=False, repr=False)

    def __call__(self):
        return self.pa_type

    def encode_example(self, value: Union[str, bytes, bytearray, dict]) -> dict:
        """Encode example into a format for Arrow.

        Args:
            value (`str` or `dict`):
                Data passed as input to Audio feature.

        Returns:
            `dict`
        """
        try:
            import soundfile as sf  # soundfile is a dependency of librosa, needed to decode audio files.
        except ImportError as err:
            raise ImportError("To support encoding audio data, please install 'soundfile'.") from err
        if isinstance(value, str):
            return {"bytes": None, "path": value}
        elif isinstance(value, (bytes, bytearray)):
            return {"bytes": value, "path": None}
        elif "array" in value:
            # convert the audio array to wav bytes
            buffer = BytesIO()
            sf.write(buffer, value["array"], value["sampling_rate"], format="wav")
            return {"bytes": buffer.getvalue(), "path": None}
        elif value.get("path") is not None and os.path.isfile(value["path"]):
            # we set "bytes": None to not duplicate the data if they're already available locally
            if value["path"].endswith("pcm"):
                # "PCM" only has raw audio bytes
                if value.get("sampling_rate") is None:
                    # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate
                    raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object")
                if value.get("bytes"):
                    # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!)
                    bytes_value = np.frombuffer(value["bytes"], dtype=np.int16).astype(np.float32) / 32767
                else:
                    bytes_value = np.memmap(value["path"], dtype="h", mode="r").astype(np.float32) / 32767

                buffer = BytesIO(b"")
                sf.write(buffer, bytes_value, value["sampling_rate"], format="wav")
                return {"bytes": buffer.getvalue(), "path": None}
            else:
                return {"bytes": None, "path": value.get("path")}
        elif value.get("bytes") is not None or value.get("path") is not None:
            # store the audio bytes, and path is used to infer the audio format using the file extension
            return {"bytes": value.get("bytes"), "path": value.get("path")}
        else:
            raise ValueError(
                f"An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}."
            )

    def decode_example(
        self, value: dict, token_per_repo_id: Optional[dict[str, Union[str, bool, None]]] = None
    ) -> dict:
        """Decode example audio file into audio data.

        Args:
            value (`dict`):
                A dictionary with keys:

                - `path`: String with relative audio file path.
                - `bytes`: Bytes of the audio file.
            token_per_repo_id (`dict`, *optional*):
                To access and decode
                audio files from private repositories on the Hub, you can pass
                a dictionary repo_id (`str`) -> token (`bool` or `str`)

        Returns:
            `dict`
        """
        if not self.decode:
            raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead.")

        path, file = (value["path"], BytesIO(value["bytes"])) if value["bytes"] is not None else (value["path"], None)
        if path is None and file is None:
            raise ValueError(f"An audio sample should have one of 'path' or 'bytes' but both are None in {value}.")

        try:
            import librosa
            import soundfile as sf
        except ImportError as err:
            raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'.") from err

        audio_format = xsplitext(path)[1][1:].lower() if path is not None else None
        if not config.IS_OPUS_SUPPORTED and audio_format == "opus":
            raise RuntimeError(
                "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, "
                'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. '
            )
        elif not config.IS_MP3_SUPPORTED and audio_format == "mp3":
            raise RuntimeError(
                "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, "
                'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. '
            )

        if file is None:
            token_per_repo_id = token_per_repo_id or {}
            source_url = path.split("::")[-1]
            pattern = (
                config.HUB_DATASETS_URL if source_url.startswith(config.HF_ENDPOINT) else config.HUB_DATASETS_HFFS_URL
            )
            source_url_fields = string_to_dict(source_url, pattern)
            token = token_per_repo_id.get(source_url_fields["repo_id"]) if source_url_fields is not None else None

            download_config = DownloadConfig(token=token)
            with xopen(path, "rb", download_config=download_config) as f:
                array, sampling_rate = sf.read(f)

        else:
            array, sampling_rate = sf.read(file)

        array = array.T
        if self.mono:
            array = librosa.to_mono(array)
        if self.sampling_rate and self.sampling_rate != sampling_rate:
            array = librosa.resample(array, orig_sr=sampling_rate, target_sr=self.sampling_rate)
            sampling_rate = self.sampling_rate

        return {"path": path, "array": array, "sampling_rate": sampling_rate}

    def flatten(self) -> Union["FeatureType", dict[str, "FeatureType"]]:
        """If in the decodable state, raise an error, otherwise flatten the feature into a dictionary."""
        from .features import Value

        if self.decode:
            raise ValueError("Cannot flatten a decoded Audio feature.")
        return {
            "bytes": Value("binary"),
            "path": Value("string"),
        }

    def cast_storage(self, storage: Union[pa.StringArray, pa.StructArray]) -> pa.StructArray:
        """Cast an Arrow array to the Audio arrow storage type.
        The Arrow types that can be converted to the Audio pyarrow storage type are:

        - `pa.string()` - it must contain the "path" data
        - `pa.binary()` - it must contain the audio bytes
        - `pa.struct({"bytes": pa.binary()})`
        - `pa.struct({"path": pa.string()})`
        - `pa.struct({"bytes": pa.binary(), "path": pa.string()})`  - order doesn't matter

        Args:
            storage (`Union[pa.StringArray, pa.StructArray]`):
                PyArrow array to cast.

        Returns:
            `pa.StructArray`: Array in the Audio arrow storage type, that is
                `pa.struct({"bytes": pa.binary(), "path": pa.string()})`
        """
        if pa.types.is_string(storage.type):
            bytes_array = pa.array([None] * len(storage), type=pa.binary())
            storage = pa.StructArray.from_arrays([bytes_array, storage], ["bytes", "path"], mask=storage.is_null())
        elif pa.types.is_binary(storage.type):
            path_array = pa.array([None] * len(storage), type=pa.string())
            storage = pa.StructArray.from_arrays([storage, path_array], ["bytes", "path"], mask=storage.is_null())
        elif pa.types.is_struct(storage.type) and storage.type.get_all_field_indices("array"):
            storage = pa.array([Audio().encode_example(x) if x is not None else None for x in storage.to_pylist()])
        elif pa.types.is_struct(storage.type):
            if storage.type.get_field_index("bytes") >= 0:
                bytes_array = storage.field("bytes")
            else:
                bytes_array = pa.array([None] * len(storage), type=pa.binary())
            if storage.type.get_field_index("path") >= 0:
                path_array = storage.field("path")
            else:
                path_array = pa.array([None] * len(storage), type=pa.string())
            storage = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=storage.is_null())
        return array_cast(storage, self.pa_type)

    def embed_storage(self, storage: pa.StructArray) -> pa.StructArray:
        """Embed audio files into the Arrow array.

        Args:
            storage (`pa.StructArray`):
                PyArrow array to embed.

        Returns:
            `pa.StructArray`: Array in the Audio arrow storage type, that is
                `pa.struct({"bytes": pa.binary(), "path": pa.string()})`.
        """

        @no_op_if_value_is_null
        def path_to_bytes(path):
            with xopen(path, "rb") as f:
                bytes_ = f.read()
            return bytes_

        bytes_array = pa.array(
            [
                (path_to_bytes(x["path"]) if x["bytes"] is None else x["bytes"]) if x is not None else None
                for x in storage.to_pylist()
            ],
            type=pa.binary(),
        )
        path_array = pa.array(
            [os.path.basename(path) if path is not None else None for path in storage.field("path").to_pylist()],
            type=pa.string(),
        )
        storage = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null())
        return array_cast(storage, self.pa_type)