File size: 12,762 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
# Copyright 2020 The TensorFlow Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Download manager interface."""
import enum
import io
import multiprocessing
import os
from datetime import datetime
from functools import partial
from typing import Optional, Union
import fsspec
from fsspec.core import url_to_fs
from tqdm.contrib.concurrent import thread_map
from .. import config
from ..utils import tqdm as hf_tqdm
from ..utils.file_utils import (
ArchiveIterable,
FilesIterable,
cached_path,
is_relative_path,
stack_multiprocessing_download_progress_bars,
url_or_path_join,
)
from ..utils.info_utils import get_size_checksum_dict
from ..utils.logging import get_logger, tqdm
from ..utils.py_utils import NestedDataStructure, map_nested
from ..utils.track import tracked_str
from .download_config import DownloadConfig
logger = get_logger(__name__)
class DownloadMode(enum.Enum):
"""`Enum` for how to treat pre-existing downloads and data.
The default mode is `REUSE_DATASET_IF_EXISTS`, which will reuse both
raw downloads and the prepared dataset if they exist.
The generations modes:
| | Downloads | Dataset |
|-------------------------------------|-----------|---------|
| `REUSE_DATASET_IF_EXISTS` (default) | Reuse | Reuse |
| `REUSE_CACHE_IF_EXISTS` | Reuse | Fresh |
| `FORCE_REDOWNLOAD` | Fresh | Fresh |
"""
REUSE_DATASET_IF_EXISTS = "reuse_dataset_if_exists"
REUSE_CACHE_IF_EXISTS = "reuse_cache_if_exists"
FORCE_REDOWNLOAD = "force_redownload"
class DownloadManager:
is_streaming = False
def __init__(
self,
dataset_name: Optional[str] = None,
data_dir: Optional[str] = None,
download_config: Optional[DownloadConfig] = None,
base_path: Optional[str] = None,
record_checksums=True,
):
"""Download manager constructor.
Args:
data_dir:
can be used to specify a manual directory to get the files from.
dataset_name (`str`):
name of dataset this instance will be used for. If
provided, downloads will contain which datasets they were used for.
download_config (`DownloadConfig`):
to specify the cache directory and other
download options
base_path (`str`):
base path that is used when relative paths are used to
download files. This can be a remote url.
record_checksums (`bool`, defaults to `True`):
Whether to record the checksums of the downloaded files. If None, the value is inferred from the builder.
"""
self._dataset_name = dataset_name
self._data_dir = data_dir
self._base_path = base_path or os.path.abspath(".")
# To record what is being used: {url: {num_bytes: int, checksum: str}}
self._recorded_sizes_checksums: dict[str, dict[str, Optional[Union[int, str]]]] = {}
self.record_checksums = record_checksums
self.download_config = download_config or DownloadConfig()
self.downloaded_paths = {}
self.extracted_paths = {}
@property
def manual_dir(self):
return self._data_dir
@property
def downloaded_size(self):
"""Returns the total size of downloaded files."""
return sum(checksums_dict["num_bytes"] for checksums_dict in self._recorded_sizes_checksums.values())
def _record_sizes_checksums(self, url_or_urls: NestedDataStructure, downloaded_path_or_paths: NestedDataStructure):
"""Record size/checksum of downloaded files."""
delay = 5
for url, path in hf_tqdm(
list(zip(url_or_urls.flatten(), downloaded_path_or_paths.flatten())),
delay=delay,
desc="Computing checksums",
):
# call str to support PathLike objects
self._recorded_sizes_checksums[str(url)] = get_size_checksum_dict(
path, record_checksum=self.record_checksums
)
def download(self, url_or_urls):
"""Download given URL(s).
By default, only one process is used for download. Pass customized `download_config.num_proc` to change this behavior.
Args:
url_or_urls (`str` or `list` or `dict`):
URL or `list` or `dict` of URLs to download. Each URL is a `str`.
Returns:
`str` or `list` or `dict`:
The downloaded paths matching the given input `url_or_urls`.
Example:
```py
>>> downloaded_files = dl_manager.download('https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz')
```
"""
download_config = self.download_config.copy()
download_config.extract_compressed_file = False
if download_config.download_desc is None:
download_config.download_desc = "Downloading data"
download_func = partial(self._download_batched, download_config=download_config)
start_time = datetime.now()
with stack_multiprocessing_download_progress_bars():
downloaded_path_or_paths = map_nested(
download_func,
url_or_urls,
map_tuple=True,
num_proc=download_config.num_proc,
desc="Downloading data files",
batched=True,
batch_size=-1,
)
duration = datetime.now() - start_time
logger.info(f"Downloading took {duration.total_seconds() // 60} min")
url_or_urls = NestedDataStructure(url_or_urls)
downloaded_path_or_paths = NestedDataStructure(downloaded_path_or_paths)
self.downloaded_paths.update(dict(zip(url_or_urls.flatten(), downloaded_path_or_paths.flatten())))
start_time = datetime.now()
self._record_sizes_checksums(url_or_urls, downloaded_path_or_paths)
duration = datetime.now() - start_time
logger.info(f"Checksum Computation took {duration.total_seconds() // 60} min")
return downloaded_path_or_paths.data
def _download_batched(
self,
url_or_filenames: list[str],
download_config: DownloadConfig,
) -> list[str]:
if len(url_or_filenames) >= 16:
download_config = download_config.copy()
download_config.disable_tqdm = True
download_func = partial(self._download_single, download_config=download_config)
fs: fsspec.AbstractFileSystem
path = str(url_or_filenames[0])
if is_relative_path(path):
# append the relative path to the base_path
path = url_or_path_join(self._base_path, path)
fs, path = url_to_fs(path, **download_config.storage_options)
size = 0
try:
size = fs.info(path).get("size", 0)
except Exception:
pass
max_workers = (
config.HF_DATASETS_MULTITHREADING_MAX_WORKERS if size < (20 << 20) else 1
) # enable multithreading if files are small
return thread_map(
download_func,
url_or_filenames,
desc=download_config.download_desc or "Downloading",
unit="files",
position=multiprocessing.current_process()._identity[-1] # contains the ranks of subprocesses
if os.environ.get("HF_DATASETS_STACK_MULTIPROCESSING_DOWNLOAD_PROGRESS_BARS") == "1"
and multiprocessing.current_process()._identity
else None,
max_workers=max_workers,
tqdm_class=tqdm,
)
else:
return [
self._download_single(url_or_filename, download_config=download_config)
for url_or_filename in url_or_filenames
]
def _download_single(self, url_or_filename: str, download_config: DownloadConfig) -> str:
url_or_filename = str(url_or_filename)
if is_relative_path(url_or_filename):
# append the relative path to the base_path
url_or_filename = url_or_path_join(self._base_path, url_or_filename)
out = cached_path(url_or_filename, download_config=download_config)
out = tracked_str(out)
out.set_origin(url_or_filename)
return out
def iter_archive(self, path_or_buf: Union[str, io.BufferedReader]):
"""Iterate over files within an archive.
Args:
path_or_buf (`str` or `io.BufferedReader`):
Archive path or archive binary file object.
Yields:
`tuple[str, io.BufferedReader]`:
2-tuple (path_within_archive, file_object).
File object is opened in binary mode.
Example:
```py
>>> archive = dl_manager.download('https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz')
>>> files = dl_manager.iter_archive(archive)
```
"""
if hasattr(path_or_buf, "read"):
return ArchiveIterable.from_buf(path_or_buf)
else:
return ArchiveIterable.from_urlpath(path_or_buf)
def iter_files(self, paths: Union[str, list[str]]):
"""Iterate over file paths.
Args:
paths (`str` or `list` of `str`):
Root paths.
Yields:
`str`: File path.
Example:
```py
>>> files = dl_manager.download_and_extract('https://huggingface.co/datasets/beans/resolve/main/data/train.zip')
>>> files = dl_manager.iter_files(files)
```
"""
return FilesIterable.from_urlpaths(paths)
def extract(self, path_or_paths):
"""Extract given path(s).
Args:
path_or_paths (path or `list` or `dict`):
Path of file to extract. Each path is a `str`.
Returns:
extracted_path(s): `str`, The extracted paths matching the given input
path_or_paths.
Example:
```py
>>> downloaded_files = dl_manager.download('https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz')
>>> extracted_files = dl_manager.extract(downloaded_files)
```
"""
download_config = self.download_config.copy()
download_config.extract_compressed_file = True
extract_func = partial(self._download_single, download_config=download_config)
extracted_paths = map_nested(
extract_func,
path_or_paths,
num_proc=download_config.num_proc,
desc="Extracting data files",
)
path_or_paths = NestedDataStructure(path_or_paths)
extracted_paths = NestedDataStructure(extracted_paths)
self.extracted_paths.update(dict(zip(path_or_paths.flatten(), extracted_paths.flatten())))
return extracted_paths.data
def download_and_extract(self, url_or_urls):
"""Download and extract given `url_or_urls`.
Is roughly equivalent to:
```
extracted_paths = dl_manager.extract(dl_manager.download(url_or_urls))
```
Args:
url_or_urls (`str` or `list` or `dict`):
URL or `list` or `dict` of URLs to download and extract. Each URL is a `str`.
Returns:
extracted_path(s): `str`, extracted paths of given URL(s).
"""
return self.extract(self.download(url_or_urls))
def get_recorded_sizes_checksums(self):
return self._recorded_sizes_checksums.copy()
def delete_extracted_files(self):
paths_to_delete = set(self.extracted_paths.values()) - set(self.downloaded_paths.values())
for key, path in list(self.extracted_paths.items()):
if path in paths_to_delete and os.path.isfile(path):
os.remove(path)
del self.extracted_paths[key]
def manage_extracted_files(self):
if self.download_config.delete_extracted:
self.delete_extracted_files()
|