File size: 110,071 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
import contextlib
import copy
import fnmatch
import json
import math
import posixpath
import re
from collections.abc import Sequence
from functools import partial
from pathlib import Path
from typing import Callable, Optional, Union

import fsspec
import numpy as np
from fsspec.core import url_to_fs
from huggingface_hub import (
    CommitInfo,
    CommitOperationAdd,
    CommitOperationDelete,
    DatasetCard,
    DatasetCardData,
    HfApi,
)
from huggingface_hub.hf_api import RepoFile

from . import config
from .arrow_dataset import (
    PUSH_TO_HUB_WITHOUT_METADATA_CONFIGS_SPLIT_PATTERN_SHARDED,
    Dataset,
)
from .features import Features
from .features.features import FeatureType
from .info import DatasetInfo, DatasetInfosDict
from .naming import _split_re
from .splits import NamedSplit, Split, SplitDict, SplitInfo
from .table import Table
from .utils import logging
from .utils.doc_utils import is_documented_by
from .utils.metadata import MetadataConfigs
from .utils.py_utils import asdict, glob_pattern_to_regex, string_to_dict
from .utils.typing import PathLike


logger = logging.get_logger(__name__)


class bind(partial):
    def __call__(self, *fn_args, **fn_kwargs):
        return self.func(*fn_args, *self.args, **fn_kwargs)


class DatasetDict(dict):
    """A dictionary (dict of str: datasets.Dataset) with dataset transforms methods (map, filter, etc.)"""

    def _check_values_type(self):
        for dataset in self.values():
            if not isinstance(dataset, Dataset):
                raise TypeError(f"Values in `DatasetDict` should be of type `Dataset` but got type '{type(dataset)}'")

    def _check_values_features(self):
        items = list(self.items())
        for item_a, item_b in zip(items[:-1], items[1:]):
            if item_a[1].features != item_b[1].features:
                raise ValueError(
                    f"All datasets in `DatasetDict` should have the same features but features for '{item_a[0]}' and '{item_b[0]}' don't match: {item_a[1].features} != {item_b[1].features}"
                )

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        # Here `del` is used to del the pyarrow tables. This properly closes the files used for memory mapped tables
        for dataset in self.values():
            if hasattr(dataset, "_data"):
                del dataset._data
            if hasattr(dataset, "_indices"):
                del dataset._indices

    def __getitem__(self, k) -> Dataset:
        if isinstance(k, (str, NamedSplit)) or len(self) == 0:
            return super().__getitem__(k)
        else:
            available_suggested_splits = [
                split for split in (Split.TRAIN, Split.TEST, Split.VALIDATION) if split in self
            ]
            suggested_split = available_suggested_splits[0] if available_suggested_splits else list(self)[0]
            raise KeyError(
                f"Invalid key: {k}. Please first select a split. For example: "
                f"`my_dataset_dictionary['{suggested_split}'][{k}]`. "
                f"Available splits: {sorted(self)}"
            )

    @property
    def data(self) -> dict[str, Table]:
        """The Apache Arrow tables backing each split.

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes")
        >>> ds.data
        ```
        """
        self._check_values_type()
        return {k: dataset.data for k, dataset in self.items()}

    @property
    def cache_files(self) -> dict[str, dict]:
        """The cache files containing the Apache Arrow table backing each split.

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes")
        >>> ds.cache_files
        {'test': [{'filename': '/root/.cache/huggingface/datasets/rotten_tomatoes_movie_review/default/1.0.0/40d411e45a6ce3484deed7cc15b82a53dad9a72aafd9f86f8f227134bec5ca46/rotten_tomatoes_movie_review-test.arrow'}],
         'train': [{'filename': '/root/.cache/huggingface/datasets/rotten_tomatoes_movie_review/default/1.0.0/40d411e45a6ce3484deed7cc15b82a53dad9a72aafd9f86f8f227134bec5ca46/rotten_tomatoes_movie_review-train.arrow'}],
         'validation': [{'filename': '/root/.cache/huggingface/datasets/rotten_tomatoes_movie_review/default/1.0.0/40d411e45a6ce3484deed7cc15b82a53dad9a72aafd9f86f8f227134bec5ca46/rotten_tomatoes_movie_review-validation.arrow'}]}
        ```
        """
        self._check_values_type()
        return {k: dataset.cache_files for k, dataset in self.items()}

    @property
    def num_columns(self) -> dict[str, int]:
        """Number of columns in each split of the dataset.

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes")
        >>> ds.num_columns
        {'test': 2, 'train': 2, 'validation': 2}
        ```
        """
        self._check_values_type()
        return {k: dataset.num_columns for k, dataset in self.items()}

    @property
    def num_rows(self) -> dict[str, int]:
        """Number of rows in each split of the dataset.

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes")
        >>> ds.num_rows
        {'test': 1066, 'train': 8530, 'validation': 1066}
        ```
        """
        self._check_values_type()
        return {k: dataset.num_rows for k, dataset in self.items()}

    @property
    def column_names(self) -> dict[str, list[str]]:
        """Names of the columns in each split of the dataset.

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes")
        >>> ds.column_names
        {'test': ['text', 'label'],
         'train': ['text', 'label'],
         'validation': ['text', 'label']}
        ```
        """
        self._check_values_type()
        return {k: dataset.column_names for k, dataset in self.items()}

    @property
    def shape(self) -> dict[str, tuple[int]]:
        """Shape of each split of the dataset (number of rows, number of columns).

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes")
        >>> ds.shape
        {'test': (1066, 2), 'train': (8530, 2), 'validation': (1066, 2)}
        ```
        """
        self._check_values_type()
        return {k: dataset.shape for k, dataset in self.items()}

    def flatten(self, max_depth=16) -> "DatasetDict":
        """Flatten the Apache Arrow Table of each split (nested features are flatten).
        Each column with a struct type is flattened into one column per struct field.
        Other columns are left unchanged.

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("rajpurkar/squad")
        >>> ds["train"].features
        {'answers': Sequence(feature={'text': Value(dtype='string', id=None), 'answer_start': Value(dtype='int32', id=None)}, length=-1, id=None),
         'context': Value(dtype='string', id=None),
         'id': Value(dtype='string', id=None),
         'question': Value(dtype='string', id=None),
         'title': Value(dtype='string', id=None)}
        >>> ds.flatten()
        DatasetDict({
            train: Dataset({
                features: ['id', 'title', 'context', 'question', 'answers.text', 'answers.answer_start'],
                num_rows: 87599
            })
            validation: Dataset({
                features: ['id', 'title', 'context', 'question', 'answers.text', 'answers.answer_start'],
                num_rows: 10570
            })
        })
        ```
        """
        self._check_values_type()
        return DatasetDict({k: dataset.flatten(max_depth=max_depth) for k, dataset in self.items()})

    def unique(self, column: str) -> dict[str, list]:
        """Return a list of the unique elements in a column for each split.

        This is implemented in the low-level backend and as such, very fast.

        Args:
            column (`str`):
                column name (list all the column names with [`~datasets.DatasetDict.column_names`])

        Returns:
            Dict[`str`, `list`]: Dictionary of unique elements in the given column.

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes")
        >>> ds.unique("label")
        {'test': [1, 0], 'train': [1, 0], 'validation': [1, 0]}
        ```
        """
        self._check_values_type()
        return {k: dataset.unique(column) for k, dataset in self.items()}

    def cleanup_cache_files(self) -> dict[str, int]:
        """Clean up all cache files in the dataset cache directory, excepted the currently used cache file if there is one.
        Be careful when running this command that no other process is currently using other cache files.

        Return:
            `Dict` with the number of removed files for each split

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes")
        >>> ds.cleanup_cache_files()
        {'test': 0, 'train': 0, 'validation': 0}
        ```
        """
        self._check_values_type()
        return {k: dataset.cleanup_cache_files() for k, dataset in self.items()}

    def __repr__(self):
        repr = "\n".join([f"{k}: {v}" for k, v in self.items()])
        repr = re.sub(r"^", " " * 4, repr, 0, re.M)
        return f"DatasetDict({{\n{repr}\n}})"

    def cast(self, features: Features) -> "DatasetDict":
        """
        Cast the dataset to a new set of features.
        The transformation is applied to all the datasets of the dataset dictionary.

        Args:
            features ([`Features`]):
                New features to cast the dataset to.
                The name and order of the fields in the features must match the current column names.
                The type of the data must also be convertible from one type to the other.
                For non-trivial conversion, e.g. `string` <-> `ClassLabel` you should use [`~DatasetDict.map`] to update the dataset.

        Example:

        ```py
        >>> from datasets import load_dataset, ClassLabel, Value
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes")
        >>> ds["train"].features
        {'label': ClassLabel(names=['neg', 'pos'], id=None),
         'text': Value(dtype='string', id=None)}
        >>> new_features = ds["train"].features.copy()
        >>> new_features['label'] = ClassLabel(names=['bad', 'good'])
        >>> new_features['text'] = Value('large_string')
        >>> ds = ds.cast(new_features)
        >>> ds["train"].features
        {'label': ClassLabel(names=['bad', 'good'], id=None),
         'text': Value(dtype='large_string', id=None)}
        ```
        """
        self._check_values_type()
        return DatasetDict({k: dataset.cast(features=features) for k, dataset in self.items()})

    def cast_column(self, column: str, feature) -> "DatasetDict":
        """Cast column to feature for decoding.

        Args:
            column (`str`):
                Column name.
            feature ([`Feature`]):
                Target feature.

        Returns:
            [`DatasetDict`]

        Example:

        ```py
        >>> from datasets import load_dataset, ClassLabel
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes")
        >>> ds["train"].features
        {'label': ClassLabel(names=['neg', 'pos'], id=None),
         'text': Value(dtype='string', id=None)}
        >>> ds = ds.cast_column('label', ClassLabel(names=['bad', 'good']))
        >>> ds["train"].features
        {'label': ClassLabel(names=['bad', 'good'], id=None),
         'text': Value(dtype='string', id=None)}
        ```
        """
        self._check_values_type()
        return DatasetDict({k: dataset.cast_column(column=column, feature=feature) for k, dataset in self.items()})

    def remove_columns(self, column_names: Union[str, list[str]]) -> "DatasetDict":
        """
        Remove one or several column(s) from each split in the dataset
        and the features associated to the column(s).

        The transformation is applied to all the splits of the dataset dictionary.

        You can also remove a column using [`~DatasetDict.map`] with `remove_columns` but the present method
        doesn't copy the data of the remaining columns and is thus faster.

        Args:
            column_names (`Union[str, list[str]]`):
                Name of the column(s) to remove.

        Returns:
            [`DatasetDict`]: A copy of the dataset object without the columns to remove.

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes")
        >>> ds = ds.remove_columns("label")
        DatasetDict({
            train: Dataset({
                features: ['text'],
                num_rows: 8530
            })
            validation: Dataset({
                features: ['text'],
                num_rows: 1066
            })
            test: Dataset({
                features: ['text'],
                num_rows: 1066
            })
        })
        ```
        """
        self._check_values_type()
        return DatasetDict({k: dataset.remove_columns(column_names=column_names) for k, dataset in self.items()})

    def rename_column(self, original_column_name: str, new_column_name: str) -> "DatasetDict":
        """
        Rename a column in the dataset and move the features associated to the original column under the new column name.
        The transformation is applied to all the datasets of the dataset dictionary.

        You can also rename a column using [`~DatasetDict.map`] with `remove_columns` but the present method:
            - takes care of moving the original features under the new column name.
            - doesn't copy the data to a new dataset and is thus much faster.

        Args:
            original_column_name (`str`):
                Name of the column to rename.
            new_column_name (`str`):
                New name for the column.

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes")
        >>> ds = ds.rename_column("label", "label_new")
        DatasetDict({
            train: Dataset({
                features: ['text', 'label_new'],
                num_rows: 8530
            })
            validation: Dataset({
                features: ['text', 'label_new'],
                num_rows: 1066
            })
            test: Dataset({
                features: ['text', 'label_new'],
                num_rows: 1066
            })
        })
        ```
        """
        self._check_values_type()
        return DatasetDict(
            {
                k: dataset.rename_column(
                    original_column_name=original_column_name,
                    new_column_name=new_column_name,
                )
                for k, dataset in self.items()
            }
        )

    def rename_columns(self, column_mapping: dict[str, str]) -> "DatasetDict":
        """
        Rename several columns in the dataset, and move the features associated to the original columns under
        the new column names.
        The transformation is applied to all the datasets of the dataset dictionary.

        Args:
            column_mapping (`Dict[str, str]`):
                A mapping of columns to rename to their new names.

        Returns:
            [`DatasetDict`]: A copy of the dataset with renamed columns.

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes")
        >>> ds.rename_columns({'text': 'text_new', 'label': 'label_new'})
        DatasetDict({
            train: Dataset({
                features: ['text_new', 'label_new'],
                num_rows: 8530
            })
            validation: Dataset({
                features: ['text_new', 'label_new'],
                num_rows: 1066
            })
            test: Dataset({
                features: ['text_new', 'label_new'],
                num_rows: 1066
            })
        })
        ```
        """
        self._check_values_type()
        return DatasetDict({k: dataset.rename_columns(column_mapping=column_mapping) for k, dataset in self.items()})

    def select_columns(self, column_names: Union[str, list[str]]) -> "DatasetDict":
        """Select one or several column(s) from each split in the dataset and
        the features associated to the column(s).

        The transformation is applied to all the splits of the dataset
        dictionary.

        Args:
            column_names (`Union[str, list[str]]`):
                Name of the column(s) to keep.

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes")
        >>> ds.select_columns("text")
        DatasetDict({
            train: Dataset({
                features: ['text'],
                num_rows: 8530
            })
            validation: Dataset({
                features: ['text'],
                num_rows: 1066
            })
            test: Dataset({
                features: ['text'],
                num_rows: 1066
            })
        })
        ```
        """
        self._check_values_type()
        return DatasetDict({k: dataset.select_columns(column_names=column_names) for k, dataset in self.items()})

    def class_encode_column(self, column: str, include_nulls: bool = False) -> "DatasetDict":
        """Casts the given column as [`~datasets.features.ClassLabel`] and updates the tables.

        Args:
            column (`str`):
                The name of the column to cast.
            include_nulls (`bool`, defaults to `False`):
                Whether to include null values in the class labels. If `True`, the null values will be encoded as the `"None"` class label.

                <Added version="1.14.2"/>

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("boolq")
        >>> ds["train"].features
        {'answer': Value(dtype='bool', id=None),
         'passage': Value(dtype='string', id=None),
         'question': Value(dtype='string', id=None)}
        >>> ds = ds.class_encode_column("answer")
        >>> ds["train"].features
        {'answer': ClassLabel(num_classes=2, names=['False', 'True'], id=None),
         'passage': Value(dtype='string', id=None),
         'question': Value(dtype='string', id=None)}
        ```
        """
        self._check_values_type()
        return DatasetDict(
            {k: dataset.class_encode_column(column=column, include_nulls=include_nulls) for k, dataset in self.items()}
        )

    @contextlib.contextmanager
    def formatted_as(
        self,
        type: Optional[str] = None,
        columns: Optional[list] = None,
        output_all_columns: bool = False,
        **format_kwargs,
    ):
        """To be used in a `with` statement. Set `__getitem__` return format (type and columns).
        The transformation is applied to all the datasets of the dataset dictionary.

        Args:
            type (`str`, *optional*):
                Either output type selected in `[None, 'numpy', 'torch', 'tensorflow', 'jax', 'arrow', 'pandas', 'polars']`.
                `None` means `__getitem__` returns python objects (default).
            columns (`list[str]`, *optional*):
                Columns to format in the output.
                `None` means `__getitem__` returns all columns (default).
            output_all_columns (`bool`, defaults to False):
                Keep un-formatted columns as well in the output (as python objects).
            **format_kwargs (additional keyword arguments):
                Keywords arguments passed to the convert function like `np.array`, `torch.tensor` or `tensorflow.ragged.constant`.
        """
        self._check_values_type()
        old_format_type = {k: dataset._format_type for k, dataset in self.items()}
        old_format_kwargs = {k: dataset._format_kwargs for k, dataset in self.items()}
        old_format_columns = {k: dataset._format_columns for k, dataset in self.items()}
        old_output_all_columns = {k: dataset._output_all_columns for k, dataset in self.items()}
        try:
            self.set_format(type, columns, output_all_columns, **format_kwargs)
            yield
        finally:
            for k, dataset in self.items():
                dataset.set_format(
                    old_format_type[k],
                    old_format_columns[k],
                    old_output_all_columns[k],
                    **old_format_kwargs[k],
                )

    def set_format(
        self,
        type: Optional[str] = None,
        columns: Optional[list] = None,
        output_all_columns: bool = False,
        **format_kwargs,
    ):
        """Set `__getitem__` return format (type and columns).
        The format is set for every dataset in the dataset dictionary.

        Args:
            type (`str`, *optional*):
                Either output type selected in `[None, 'numpy', 'torch', 'tensorflow', 'jax', 'arrow', 'pandas', 'polars']`.
                `None` means `__getitem__` returns python objects (default).
            columns (`list[str]`, *optional*):
                Columns to format in the output.
                `None` means `__getitem__` returns all columns (default).
            output_all_columns (`bool`, defaults to False):
                Keep un-formatted columns as well in the output (as python objects),
            **format_kwargs (additional keyword arguments):
                Keywords arguments passed to the convert function like `np.array`, `torch.tensor` or `tensorflow.ragged.constant`.

        It is possible to call `map` after calling `set_format`. Since `map` may add new columns, then the list of formatted columns
        gets updated. In this case, if you apply `map` on a dataset to add a new column, then this column will be formatted:

            `new formatted columns = (all columns - previously unformatted columns)`

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> from transformers import AutoTokenizer
        >>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
        >>> ds = ds.map(lambda x: tokenizer(x["text"], truncation=True, padding=True), batched=True)
        >>> ds.set_format(type="numpy", columns=['input_ids', 'token_type_ids', 'attention_mask', 'label'])
        >>> ds["train"].format
        {'columns': ['input_ids', 'token_type_ids', 'attention_mask', 'label'],
         'format_kwargs': {},
         'output_all_columns': False,
         'type': 'numpy'}
        ```
        """
        self._check_values_type()
        for dataset in self.values():
            dataset.set_format(
                type=type,
                columns=columns,
                output_all_columns=output_all_columns,
                **format_kwargs,
            )

    def reset_format(self):
        """Reset `__getitem__` return format to python objects and all columns.
        The transformation is applied to all the datasets of the dataset dictionary.

        Same as `self.set_format()`

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> from transformers import AutoTokenizer
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes")
        >>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
        >>> ds = ds.map(lambda x: tokenizer(x["text"], truncation=True, padding=True), batched=True)
        >>> ds.set_format(type="numpy", columns=['input_ids', 'token_type_ids', 'attention_mask', 'label'])
        >>> ds["train"].format
        {'columns': ['input_ids', 'token_type_ids', 'attention_mask', 'label'],
         'format_kwargs': {},
         'output_all_columns': False,
         'type': 'numpy'}
        >>> ds.reset_format()
        >>> ds["train"].format
        {'columns': ['text', 'label', 'input_ids', 'token_type_ids', 'attention_mask'],
         'format_kwargs': {},
         'output_all_columns': False,
         'type': None}
        ```
        """
        self._check_values_type()
        for dataset in self.values():
            dataset.set_format()

    def set_transform(
        self,
        transform: Optional[Callable],
        columns: Optional[list] = None,
        output_all_columns: bool = False,
    ):
        """Set ``__getitem__`` return format using this transform. The transform is applied on-the-fly on batches when ``__getitem__`` is called.
        The transform is set for every dataset in the dataset dictionary
        As :func:`datasets.Dataset.set_format`, this can be reset using :func:`datasets.Dataset.reset_format`

        Args:
            transform (`Callable`, optional): user-defined formatting transform, replaces the format defined by :func:`datasets.Dataset.set_format`
                A formatting function is a callable that takes a batch (as a dict) as input and returns a batch.
                This function is applied right before returning the objects in ``__getitem__``.
            columns (`list[str]`, optional): columns to format in the output
                If specified, then the input batch of the transform only contains those columns.
            output_all_columns (`bool`, default to False): keep un-formatted columns as well in the output (as python objects)
                If set to True, then the other un-formatted columns are kept with the output of the transform.

        """
        self._check_values_type()
        for dataset in self.values():
            dataset.set_format(
                "custom",
                columns=columns,
                output_all_columns=output_all_columns,
                transform=transform,
            )

    def with_format(
        self,
        type: Optional[str] = None,
        columns: Optional[list] = None,
        output_all_columns: bool = False,
        **format_kwargs,
    ) -> "DatasetDict":
        """Set `__getitem__` return format (type and columns). The data formatting is applied on-the-fly.
        The format `type` (for example "numpy") is used to format batches when using `__getitem__`.
        The format is set for every dataset in the dataset dictionary.

        It's also possible to use custom transforms for formatting using [`~datasets.Dataset.with_transform`].

        Contrary to [`~datasets.DatasetDict.set_format`], `with_format` returns a new [`DatasetDict`] object with new [`Dataset`] objects.

        Args:
            type (`str`, *optional*):
                Either output type selected in `[None, 'numpy', 'torch', 'tensorflow', 'jax', 'arrow', 'pandas', 'polars']`.
                `None` means `__getitem__` returns python objects (default).
            columns (`list[str]`, *optional*):
                Columns to format in the output.
                `None` means `__getitem__` returns all columns (default).
            output_all_columns (`bool`, defaults to `False`):
                Keep un-formatted columns as well in the output (as python objects).
            **format_kwargs (additional keyword arguments):
                Keywords arguments passed to the convert function like `np.array`, `torch.tensor` or `tensorflow.ragged.constant`.

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> from transformers import AutoTokenizer
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes")
        >>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
        >>> ds = ds.map(lambda x: tokenizer(x['text'], truncation=True, padding=True), batched=True)
        >>> ds["train"].format
        {'columns': ['text', 'label', 'input_ids', 'token_type_ids', 'attention_mask'],
         'format_kwargs': {},
         'output_all_columns': False,
         'type': None}
        >>> ds = ds.with_format("torch")
        >>> ds["train"].format
        {'columns': ['text', 'label', 'input_ids', 'token_type_ids', 'attention_mask'],
         'format_kwargs': {},
         'output_all_columns': False,
         'type': 'torch'}
        >>> ds["train"][0]
        {'text': 'compassionately explores the seemingly irreconcilable situation between conservative christian parents and their estranged gay and lesbian children .',
         'label': tensor(1),
         'input_ids': tensor([  101, 18027, 16310, 16001,  1103,  9321,   178, 11604,  7235,  6617,
                1742,  2165,  2820,  1206,  6588, 22572, 12937,  1811,  2153,  1105,
                1147, 12890, 19587,  6463,  1105, 15026,  1482,   119,   102,     0,
                    0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
                    0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
                    0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
                    0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
                    0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
                    0,     0,     0,     0]),
         'token_type_ids': tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),
         'attention_mask': tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])}
        ```
        """
        dataset = copy.deepcopy(self)
        dataset.set_format(
            type=type,
            columns=columns,
            output_all_columns=output_all_columns,
            **format_kwargs,
        )
        return dataset

    def with_transform(
        self,
        transform: Optional[Callable],
        columns: Optional[list] = None,
        output_all_columns: bool = False,
    ) -> "DatasetDict":
        """Set `__getitem__` return format using this transform. The transform is applied on-the-fly on batches when `__getitem__` is called.
        The transform is set for every dataset in the dataset dictionary

        As [`~datasets.Dataset.set_format`], this can be reset using [`~datasets.Dataset.reset_format`].

        Contrary to [`~datasets.DatasetDict.set_transform`], `with_transform` returns a new [`DatasetDict`] object with new [`Dataset`] objects.

        Args:
            transform (`Callable`, *optional*):
                User-defined formatting transform, replaces the format defined by [`~datasets.Dataset.set_format`].
                A formatting function is a callable that takes a batch (as a dict) as input and returns a batch.
                This function is applied right before returning the objects in `__getitem__`.
            columns (`list[str]`, *optional*):
                Columns to format in the output.
                If specified, then the input batch of the transform only contains those columns.
            output_all_columns (`bool`, defaults to False):
                Keep un-formatted columns as well in the output (as python objects).
                If set to `True`, then the other un-formatted columns are kept with the output of the transform.

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> from transformers import AutoTokenizer
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes")
        >>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
        >>> def encode(example):
        ...     return tokenizer(example['text'], truncation=True, padding=True, return_tensors="pt")
        >>> ds = ds.with_transform(encode)
        >>> ds["train"][0]
        {'attention_mask': tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
         1, 1, 1, 1, 1, 1, 1, 1, 1]),
         'input_ids': tensor([  101,  1103,  2067,  1110, 17348,  1106,  1129,  1103,  6880,  1432,
                112,   188,  1207,   107, 14255,  1389,   107,  1105,  1115,  1119,
                112,   188,  1280,  1106,  1294,   170, 24194,  1256,  3407,  1190,
                170, 11791,  5253,   188,  1732,  7200, 10947, 12606,  2895,   117,
                179,  7766,   118,   172, 15554,  1181,  3498,  6961,  3263,  1137,
                188,  1566,  7912, 14516,  6997,   119,   102]),
         'token_type_ids': tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                0, 0, 0, 0, 0, 0, 0, 0, 0])}
        ```
        """
        dataset = copy.deepcopy(self)
        dataset.set_transform(transform=transform, columns=columns, output_all_columns=output_all_columns)
        return dataset

    def map(
        self,
        function: Optional[Callable] = None,
        with_indices: bool = False,
        with_rank: bool = False,
        with_split: bool = False,
        input_columns: Optional[Union[str, list[str]]] = None,
        batched: bool = False,
        batch_size: Optional[int] = 1000,
        drop_last_batch: bool = False,
        remove_columns: Optional[Union[str, list[str]]] = None,
        keep_in_memory: bool = False,
        load_from_cache_file: Optional[bool] = None,
        cache_file_names: Optional[dict[str, Optional[str]]] = None,
        writer_batch_size: Optional[int] = 1000,
        features: Optional[Features] = None,
        disable_nullable: bool = False,
        fn_kwargs: Optional[dict] = None,
        num_proc: Optional[int] = None,
        desc: Optional[str] = None,
        try_original_type: Optional[bool] = True,
    ) -> "DatasetDict":
        """
        Apply a function to all the examples in the table (individually or in batches) and update the table.
        If your function returns a column that already exists, then it overwrites it.
        The transformation is applied to all the datasets of the dataset dictionary.

        You can specify whether the function should be batched or not with the `batched` parameter:

        - If batched is `False`, then the function takes 1 example in and should return 1 example.
          An example is a dictionary, e.g. `{"text": "Hello there !"}`.
        - If batched is `True` and `batch_size` is 1, then the function takes a batch of 1 example as input and can return a batch with 1 or more examples.
          A batch is a dictionary, e.g. a batch of 1 example is `{"text": ["Hello there !"]}`.
        - If batched is `True` and `batch_size` is `n > 1`, then the function takes a batch of `n` examples as input and can return a batch with `n` examples, or with an arbitrary number of examples.
          Note that the last batch may have less than `n` examples.
          A batch is a dictionary, e.g. a batch of `n` examples is `{"text": ["Hello there !"] * n}`.

        If the function is asynchronous, then `map` will run your function in parallel, with up to one thousand simulatenous calls.
        It is recommended to use a `asyncio.Semaphore` in your function if you want to set a maximum number of operations that can run at the same time.

        Args:
            function (`callable`): with one of the following signature:
                - `function(example: Dict[str, Any]) -> Dict[str, Any]` if `batched=False` and `with_indices=False`
                - `function(example: Dict[str, Any], indices: int) -> Dict[str, Any]` if `batched=False` and `with_indices=True`
                - `function(batch: Dict[str, list]) -> Dict[str, list]` if `batched=True` and `with_indices=False`
                - `function(batch: Dict[str, list], indices: list[int]) -> Dict[str, list]` if `batched=True` and `with_indices=True`

                For advanced usage, the function can also return a `pyarrow.Table`.
                If the function is asynchronous, then `map` will run your function in parallel.
                Moreover if your function returns nothing (`None`), then `map` will run your function and return the dataset unchanged.
                If no function is provided, default to identity function: `lambda x: x`.
            with_indices (`bool`, defaults to `False`):
                Provide example indices to `function`. Note that in this case the signature of `function` should be `def function(example, idx): ...`.
            with_rank (`bool`, defaults to `False`):
                Provide process rank to `function`. Note that in this case the
                signature of `function` should be `def function(example[, idx], rank): ...`.
            with_split (`bool`, defaults to `False`):
                Provide process split to `function`. Note that in this case the
                signature of `function` should be `def function(example[, idx], split): ...`.
            input_columns (`[Union[str, list[str]]]`, *optional*, defaults to `None`):
                The columns to be passed into `function` as
                positional arguments. If `None`, a dict mapping to all formatted columns is passed as one argument.
            batched (`bool`, defaults to `False`):
                Provide batch of examples to `function`.
            batch_size (`int`, *optional*, defaults to `1000`):
                Number of examples per batch provided to `function` if `batched=True`,
                `batch_size <= 0` or `batch_size == None` then provide the full dataset as a single batch to `function`.
            drop_last_batch (`bool`, defaults to `False`):
                Whether a last batch smaller than the batch_size should be
                dropped instead of being processed by the function.
            remove_columns (`[Union[str, list[str]]]`, *optional*, defaults to `None`):
                Remove a selection of columns while doing the mapping.
                Columns will be removed before updating the examples with the output of `function`, i.e. if `function` is adding
                columns with names in `remove_columns`, these columns will be kept.
            keep_in_memory (`bool`, defaults to `False`):
                Keep the dataset in memory instead of writing it to a cache file.
            load_from_cache_file (`Optional[bool]`, defaults to `True` if caching is enabled):
                If a cache file storing the current computation from `function`
                can be identified, use it instead of recomputing.
            cache_file_names (`[Dict[str, str]]`, *optional*, defaults to `None`):
                Provide the name of a path for the cache file. It is used to store the
                results of the computation instead of the automatically generated cache file name.
                You have to provide one `cache_file_name` per dataset in the dataset dictionary.
            writer_batch_size (`int`, default `1000`):
                Number of rows per write operation for the cache file writer.
                This value is a good trade-off between memory usage during the processing, and processing speed.
                Higher value makes the processing do fewer lookups, lower value consume less temporary memory while running `map`.
            features (`[datasets.Features]`, *optional*, defaults to `None`):
                Use a specific [`Features`] to store the cache file
                instead of the automatically generated one.
            disable_nullable (`bool`, defaults to `False`):
                Disallow null values in the table.
            fn_kwargs (`Dict`, *optional*, defaults to `None`):
                Keyword arguments to be passed to `function`
            num_proc (`int`, *optional*, defaults to `None`):
                Number of processes for multiprocessing. By default it doesn't
                use multiprocessing.
            desc (`str`, *optional*, defaults to `None`):
                Meaningful description to be displayed alongside with the progress bar while mapping examples.
            try_original_type (`Optional[bool]`, defaults to `True`):
                Try to keep the types of the original columns (e.g. int32 -> int32).
                Set to False if you want to always infer new types.

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes")
        >>> def add_prefix(example):
        ...     example["text"] = "Review: " + example["text"]
        ...     return example
        >>> ds = ds.map(add_prefix)
        >>> ds["train"][0:3]["text"]
        ['Review: the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .',
         'Review: the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .',
         'Review: effective but too-tepid biopic']

        # process a batch of examples
        >>> ds = ds.map(lambda example: tokenizer(example["text"]), batched=True)
        # set number of processors
        >>> ds = ds.map(add_prefix, num_proc=4)
        ```
        """
        self._check_values_type()
        if cache_file_names is None:
            cache_file_names = dict.fromkeys(self)

        dataset_dict = {}
        for split, dataset in self.items():
            if with_split:
                function = bind(function, split)

            dataset_dict[split] = dataset.map(
                function=function,
                with_indices=with_indices,
                with_rank=with_rank,
                input_columns=input_columns,
                batched=batched,
                batch_size=batch_size,
                drop_last_batch=drop_last_batch,
                remove_columns=remove_columns,
                keep_in_memory=keep_in_memory,
                load_from_cache_file=load_from_cache_file,
                cache_file_name=cache_file_names[split],
                writer_batch_size=writer_batch_size,
                features=features,
                disable_nullable=disable_nullable,
                fn_kwargs=fn_kwargs,
                num_proc=num_proc,
                desc=desc,
                try_original_type=try_original_type,
            )

            if with_split:
                function = function.func

        return DatasetDict(dataset_dict)

    def filter(
        self,
        function: Optional[Callable] = None,
        with_indices: bool = False,
        with_rank: bool = False,
        input_columns: Optional[Union[str, list[str]]] = None,
        batched: bool = False,
        batch_size: Optional[int] = 1000,
        keep_in_memory: bool = False,
        load_from_cache_file: Optional[bool] = None,
        cache_file_names: Optional[dict[str, Optional[str]]] = None,
        writer_batch_size: Optional[int] = 1000,
        fn_kwargs: Optional[dict] = None,
        num_proc: Optional[int] = None,
        desc: Optional[str] = None,
    ) -> "DatasetDict":
        """Apply a filter function to all the elements in the table in batches
        and update the table so that the dataset only includes examples according to the filter function.
        The transformation is applied to all the datasets of the dataset dictionary.

        Args:
            function (`Callable`): Callable with one of the following signatures:

                - `function(example: Dict[str, Any]) -> bool` if `batched=False` and `with_indices=False` and `with_rank=False`
                - `function(example: Dict[str, Any], *extra_args) -> bool` if `batched=False` and `with_indices=True` and/or `with_rank=True` (one extra arg for each)
                - `function(batch: Dict[str, list]) -> list[bool]` if `batched=True` and `with_indices=False` and `with_rank=False`
                - `function(batch: Dict[str, list], *extra_args) -> list[bool]` if `batched=True` and `with_indices=True` and/or `with_rank=True` (one extra arg for each)

                If no function is provided, defaults to an always `True` function: `lambda x: True`.
            with_indices (`bool`, defaults to `False`):
                Provide example indices to `function`. Note that in this case the
                signature of `function` should be `def function(example, idx[, rank]): ...`.
            with_rank (`bool`, defaults to `False`):
                Provide process rank to `function`. Note that in this case the
                signature of `function` should be `def function(example[, idx], rank): ...`.
            input_columns (`[Union[str, list[str]]]`, *optional*, defaults to `None`):
                The columns to be passed into `function` as
                positional arguments. If `None`, a dict mapping to all formatted columns is passed as one argument.
            batched (`bool`, defaults to `False`):
                Provide batch of examples to `function`.
            batch_size (`int`, *optional*, defaults to `1000`):
                Number of examples per batch provided to `function` if `batched=True`
                `batch_size <= 0` or `batch_size == None` then provide the full dataset as a single batch to `function`.
            keep_in_memory (`bool`, defaults to `False`):
                Keep the dataset in memory instead of writing it to a cache file.
            load_from_cache_file (`Optional[bool]`, defaults to `True` if caching is enabled):
                If a cache file storing the current computation from `function`
                can be identified, use it instead of recomputing.
            cache_file_names (`[Dict[str, str]]`, *optional*, defaults to `None`):
                Provide the name of a path for the cache file. It is used to store the
                results of the computation instead of the automatically generated cache file name.
                You have to provide one `cache_file_name` per dataset in the dataset dictionary.
            writer_batch_size (`int`, defaults to `1000`):
                Number of rows per write operation for the cache file writer.
                This value is a good trade-off between memory usage during the processing, and processing speed.
                Higher value makes the processing do fewer lookups, lower value consume less temporary memory while running `map`.
            fn_kwargs (`Dict`, *optional*, defaults to `None`):
                Keyword arguments to be passed to `function`
            num_proc (`int`, *optional*, defaults to `None`):
                Number of processes for multiprocessing. By default it doesn't
                use multiprocessing.
            desc (`str`, *optional*, defaults to `None`):
                Meaningful description to be displayed alongside with the progress bar while filtering examples.

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes")
        >>> ds.filter(lambda x: x["label"] == 1)
        DatasetDict({
            train: Dataset({
                features: ['text', 'label'],
                num_rows: 4265
            })
            validation: Dataset({
                features: ['text', 'label'],
                num_rows: 533
            })
            test: Dataset({
                features: ['text', 'label'],
                num_rows: 533
            })
        })
        ```
        """
        self._check_values_type()
        if cache_file_names is None:
            cache_file_names = dict.fromkeys(self)
        return DatasetDict(
            {
                k: dataset.filter(
                    function=function,
                    with_indices=with_indices,
                    with_rank=with_rank,
                    input_columns=input_columns,
                    batched=batched,
                    batch_size=batch_size,
                    keep_in_memory=keep_in_memory,
                    load_from_cache_file=load_from_cache_file,
                    cache_file_name=cache_file_names[k],
                    writer_batch_size=writer_batch_size,
                    fn_kwargs=fn_kwargs,
                    num_proc=num_proc,
                    desc=desc,
                )
                for k, dataset in self.items()
            }
        )

    def flatten_indices(
        self,
        keep_in_memory: bool = False,
        cache_file_names: Optional[dict[str, Optional[str]]] = None,
        writer_batch_size: Optional[int] = 1000,
        features: Optional[Features] = None,
        disable_nullable: bool = False,
        num_proc: Optional[int] = None,
        new_fingerprint: Optional[str] = None,
    ) -> "DatasetDict":
        """Create and cache a new Dataset by flattening the indices mapping.

        Args:
            keep_in_memory (`bool`, defaults to `False`):
                Keep the dataset in memory instead of writing it to a cache file.
            cache_file_names (`Dict[str, str]`, *optional*, default `None`):
                Provide the name of a path for the cache file. It is used to store the
                results of the computation instead of the automatically generated cache file name.
                You have to provide one `cache_file_name` per dataset in the dataset dictionary.
            writer_batch_size (`int`, defaults to `1000`):
                Number of rows per write operation for the cache file writer.
                This value is a good trade-off between memory usage during the processing, and processing speed.
                Higher value makes the processing do fewer lookups, lower value consume less temporary memory while running `map`.
            features (`Optional[datasets.Features]`, defaults to `None`):
                Use a specific [`Features`] to store the cache file
                instead of the automatically generated one.
            disable_nullable (`bool`, defaults to `False`):
                Allow null values in the table.
            num_proc (`int`, optional, default `None`):
                Max number of processes when generating cache. Already cached shards are loaded sequentially
            new_fingerprint (`str`, *optional*, defaults to `None`):
                The new fingerprint of the dataset after transform.
                If `None`, the new fingerprint is computed using a hash of the previous fingerprint, and the transform arguments
        """
        self._check_values_type()
        if cache_file_names is None:
            cache_file_names = dict.fromkeys(self)
        return DatasetDict(
            {
                k: dataset.flatten_indices(
                    keep_in_memory=keep_in_memory,
                    cache_file_name=cache_file_names[k],
                    writer_batch_size=writer_batch_size,
                    features=features,
                    disable_nullable=disable_nullable,
                    num_proc=num_proc,
                    new_fingerprint=new_fingerprint,
                )
                for k, dataset in self.items()
            }
        )

    def sort(
        self,
        column_names: Union[str, Sequence[str]],
        reverse: Union[bool, Sequence[bool]] = False,
        null_placement: str = "at_end",
        keep_in_memory: bool = False,
        load_from_cache_file: Optional[bool] = None,
        indices_cache_file_names: Optional[dict[str, Optional[str]]] = None,
        writer_batch_size: Optional[int] = 1000,
    ) -> "DatasetDict":
        """Create a new dataset sorted according to a single or multiple columns.

        Args:
            column_names (`Union[str, Sequence[str]]`):
                Column name(s) to sort by.
            reverse (`Union[bool, Sequence[bool]]`, defaults to `False`):
                If `True`, sort by descending order rather than ascending. If a single bool is provided,
                the value is applied to the sorting of all column names. Otherwise a list of bools with the
                same length and order as column_names must be provided.
            null_placement (`str`, defaults to `at_end`):
                Put `None` values at the beginning if `at_start` or `first` or at the end if `at_end` or `last`
            keep_in_memory (`bool`, defaults to `False`):
                Keep the sorted indices in memory instead of writing it to a cache file.
            load_from_cache_file (`Optional[bool]`, defaults to `True` if caching is enabled):
                If a cache file storing the sorted indices
                can be identified, use it instead of recomputing.
            indices_cache_file_names (`[Dict[str, str]]`, *optional*, defaults to `None`):
                Provide the name of a path for the cache file. It is used to store the
                indices mapping instead of the automatically generated cache file name.
                You have to provide one `cache_file_name` per dataset in the dataset dictionary.
            writer_batch_size (`int`, defaults to `1000`):
                Number of rows per write operation for the cache file writer.
                Higher value gives smaller cache files, lower value consume less temporary memory.

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset('cornell-movie-review-data/rotten_tomatoes')
        >>> ds['train']['label'][:10]
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
        >>> sorted_ds = ds.sort('label')
        >>> sorted_ds['train']['label'][:10]
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
        >>> another_sorted_ds = ds.sort(['label', 'text'], reverse=[True, False])
        >>> another_sorted_ds['train']['label'][:10]
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
        ```
        """
        self._check_values_type()
        if indices_cache_file_names is None:
            indices_cache_file_names = dict.fromkeys(self)
        return DatasetDict(
            {
                k: dataset.sort(
                    column_names=column_names,
                    reverse=reverse,
                    null_placement=null_placement,
                    keep_in_memory=keep_in_memory,
                    load_from_cache_file=load_from_cache_file,
                    indices_cache_file_name=indices_cache_file_names[k],
                    writer_batch_size=writer_batch_size,
                )
                for k, dataset in self.items()
            }
        )

    def shuffle(
        self,
        seeds: Optional[Union[int, dict[str, Optional[int]]]] = None,
        seed: Optional[int] = None,
        generators: Optional[dict[str, np.random.Generator]] = None,
        keep_in_memory: bool = False,
        load_from_cache_file: Optional[bool] = None,
        indices_cache_file_names: Optional[dict[str, Optional[str]]] = None,
        writer_batch_size: Optional[int] = 1000,
    ) -> "DatasetDict":
        """Create a new Dataset where the rows are shuffled.

        The transformation is applied to all the datasets of the dataset dictionary.

        Currently shuffling uses numpy random generators.
        You can either supply a NumPy BitGenerator to use, or a seed to initiate NumPy's default random generator (PCG64).

        Args:
            seeds (`Dict[str, int]` or `int`, *optional*):
                A seed to initialize the default BitGenerator if `generator=None`.
                If `None`, then fresh, unpredictable entropy will be pulled from the OS.
                If an `int` or `array_like[ints]` is passed, then it will be passed to SeedSequence to derive the initial BitGenerator state.
                You can provide one `seed` per dataset in the dataset dictionary.
            seed (`int`, *optional*):
                A seed to initialize the default BitGenerator if `generator=None`. Alias for seeds (a `ValueError` is raised if both are provided).
            generators (`Dict[str, *optional*, np.random.Generator]`):
                Numpy random Generator to use to compute the permutation of the dataset rows.
                If `generator=None` (default), uses `np.random.default_rng` (the default BitGenerator (PCG64) of NumPy).
                You have to provide one `generator` per dataset in the dataset dictionary.
            keep_in_memory (`bool`, defaults to `False`):
                Keep the dataset in memory instead of writing it to a cache file.
            load_from_cache_file (`Optional[bool]`, defaults to `True` if caching is enabled):
                If a cache file storing the current computation from `function`
                can be identified, use it instead of recomputing.
            indices_cache_file_names (`Dict[str, str]`, *optional*):
                Provide the name of a path for the cache file. It is used to store the
                indices mappings instead of the automatically generated cache file name.
                You have to provide one `cache_file_name` per dataset in the dataset dictionary.
            writer_batch_size (`int`, defaults to `1000`):
                Number of rows per write operation for the cache file writer.
                This value is a good trade-off between memory usage during the processing, and processing speed.
                Higher value makes the processing do fewer lookups, lower value consume less temporary memory while running `map`.

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes")
        >>> ds["train"]["label"][:10]
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

        # set a seed
        >>> shuffled_ds = ds.shuffle(seed=42)
        >>> shuffled_ds["train"]["label"][:10]
        [0, 1, 0, 1, 0, 0, 0, 0, 0, 0]
        ```
        """
        self._check_values_type()
        if seed is not None and seeds is not None:
            raise ValueError("Please specify seed or seeds, but not both")
        seeds = seed if seed is not None else seeds
        if seeds is None:
            seeds = dict.fromkeys(self)
        elif not isinstance(seeds, dict):
            seeds = dict.fromkeys(self, seeds)
        if generators is None:
            generators = dict.fromkeys(self)
        if indices_cache_file_names is None:
            indices_cache_file_names = dict.fromkeys(self)
        return DatasetDict(
            {
                k: dataset.shuffle(
                    seed=seeds[k],
                    generator=generators[k],
                    keep_in_memory=keep_in_memory,
                    load_from_cache_file=load_from_cache_file,
                    indices_cache_file_name=indices_cache_file_names[k],
                    writer_batch_size=writer_batch_size,
                )
                for k, dataset in self.items()
            }
        )

    def save_to_disk(
        self,
        dataset_dict_path: PathLike,
        max_shard_size: Optional[Union[str, int]] = None,
        num_shards: Optional[dict[str, int]] = None,
        num_proc: Optional[int] = None,
        storage_options: Optional[dict] = None,
    ):
        """
        Saves a dataset dict to a filesystem using `fsspec.spec.AbstractFileSystem`.

        For [`Image`], [`Audio`] and [`Video`] data:

        All the Image(), Audio() and Video() data are stored in the arrow files.
        If you want to store paths or urls, please use the Value("string") type.

        Args:
            dataset_dict_path (`path-like`):
                Path (e.g. `dataset/train`) or remote URI (e.g. `s3://my-bucket/dataset/train`)
                of the dataset dict directory where the dataset dict will be saved to.
            max_shard_size (`int` or `str`, *optional*, defaults to `"500MB"`):
                The maximum size of the dataset shards to be uploaded to the hub. If expressed as a string, needs to be digits followed by a unit
                (like `"50MB"`).
            num_shards (`Dict[str, int]`, *optional*):
                Number of shards to write. By default the number of shards depends on `max_shard_size` and `num_proc`.
                You need to provide the number of shards for each dataset in the dataset dictionary.
                Use a dictionary to define a different num_shards for each split.

                <Added version="2.8.0"/>
            num_proc (`int`, *optional*, default `None`):
                Number of processes when downloading and generating the dataset locally.
                Multiprocessing is disabled by default.

                <Added version="2.8.0"/>
            storage_options (`dict`, *optional*):
                Key/value pairs to be passed on to the file-system backend, if any.

                <Added version="2.8.0"/>

        Example:

        ```python
        >>> dataset_dict.save_to_disk("path/to/dataset/directory")
        >>> dataset_dict.save_to_disk("path/to/dataset/directory", max_shard_size="1GB")
        >>> dataset_dict.save_to_disk("path/to/dataset/directory", num_shards={"train": 1024, "test": 8})
        ```
        """
        fs: fsspec.AbstractFileSystem
        fs, _ = url_to_fs(dataset_dict_path, **(storage_options or {}))

        if num_shards is None:
            num_shards = dict.fromkeys(self)
        elif not isinstance(num_shards, dict):
            raise ValueError(
                "Please provide one `num_shards` per dataset in the dataset dictionary, e.g. {{'train': 128, 'test': 4}}"
            )

        fs.makedirs(dataset_dict_path, exist_ok=True)

        with fs.open(
            posixpath.join(dataset_dict_path, config.DATASETDICT_JSON_FILENAME),
            "w",
            encoding="utf-8",
        ) as f:
            json.dump({"splits": list(self)}, f)
        for k, dataset in self.items():
            dataset.save_to_disk(
                posixpath.join(dataset_dict_path, k),
                num_shards=num_shards.get(k),
                max_shard_size=max_shard_size,
                num_proc=num_proc,
                storage_options=storage_options,
            )

    @staticmethod
    def load_from_disk(
        dataset_dict_path: PathLike,
        keep_in_memory: Optional[bool] = None,
        storage_options: Optional[dict] = None,
    ) -> "DatasetDict":
        """
        Load a dataset that was previously saved using [`save_to_disk`] from a filesystem using `fsspec.spec.AbstractFileSystem`.

        Args:
            dataset_dict_path (`path-like`):
                Path (e.g. `"dataset/train"`) or remote URI (e.g. `"s3//my-bucket/dataset/train"`)
                of the dataset dict directory where the dataset dict will be loaded from.
            keep_in_memory (`bool`, defaults to `None`):
                Whether to copy the dataset in-memory. If `None`, the
                dataset will not be copied in-memory unless explicitly enabled by setting
                `datasets.config.IN_MEMORY_MAX_SIZE` to nonzero. See more details in the
                [improve performance](../cache#improve-performance) section.
            storage_options (`dict`, *optional*):
                Key/value pairs to be passed on to the file-system backend, if any.

                <Added version="2.8.0"/>

        Returns:
            [`DatasetDict`]

        Example:

        ```py
        >>> ds = load_from_disk('path/to/dataset/directory')
        ```
        """
        fs: fsspec.AbstractFileSystem
        fs, dataset_dict_path = url_to_fs(dataset_dict_path, **(storage_options or {}))

        dataset_dict_json_path = posixpath.join(dataset_dict_path, config.DATASETDICT_JSON_FILENAME)
        dataset_state_json_path = posixpath.join(dataset_dict_path, config.DATASET_STATE_JSON_FILENAME)
        dataset_info_path = posixpath.join(dataset_dict_path, config.DATASET_INFO_FILENAME)
        if not fs.isfile(dataset_dict_json_path):
            if fs.isfile(dataset_info_path) and fs.isfile(dataset_state_json_path):
                raise FileNotFoundError(
                    f"No such file: '{dataset_dict_json_path}'. Expected to load a `DatasetDict` object, but got a `Dataset`. Please use either `datasets.load_from_disk` or `Dataset.load_from_disk` instead."
                )
            raise FileNotFoundError(
                f"No such file: '{dataset_dict_json_path}'. Expected to load a `DatasetDict` object, but provided path is not a `DatasetDict`."
            )

        with fs.open(dataset_dict_json_path, "r", encoding="utf-8") as f:
            splits = json.load(f)["splits"]

        dataset_dict = DatasetDict()
        for k in splits:
            dataset_dict_split_path = posixpath.join(fs.unstrip_protocol(dataset_dict_path), k)
            dataset_dict[k] = Dataset.load_from_disk(
                dataset_dict_split_path,
                keep_in_memory=keep_in_memory,
                storage_options=storage_options,
            )
        return dataset_dict

    @staticmethod
    def from_csv(
        path_or_paths: dict[str, PathLike],
        features: Optional[Features] = None,
        cache_dir: str = None,
        keep_in_memory: bool = False,
        **kwargs,
    ) -> "DatasetDict":
        """Create [`DatasetDict`] from CSV file(s).

        Args:
            path_or_paths (`dict` of path-like):
                Path(s) of the CSV file(s).
            features ([`Features`], *optional*):
                Dataset features.
            cache_dir (str, *optional*, defaults to `"~/.cache/huggingface/datasets"`):
                Directory to cache data.
            keep_in_memory (`bool`, defaults to `False`):
                Whether to copy the data in-memory.
            **kwargs (additional keyword arguments):
                Keyword arguments to be passed to [`pandas.read_csv`].

        Returns:
            [`DatasetDict`]

        Example:

        ```py
        >>> from datasets import DatasetDict
        >>> ds = DatasetDict.from_csv({'train': 'path/to/dataset.csv'})
        ```
        """
        # Dynamic import to avoid circular dependency
        from .io.csv import CsvDatasetReader

        return CsvDatasetReader(
            path_or_paths,
            features=features,
            cache_dir=cache_dir,
            keep_in_memory=keep_in_memory,
            **kwargs,
        ).read()

    @staticmethod
    def from_json(
        path_or_paths: dict[str, PathLike],
        features: Optional[Features] = None,
        cache_dir: str = None,
        keep_in_memory: bool = False,
        **kwargs,
    ) -> "DatasetDict":
        """Create [`DatasetDict`] from JSON Lines file(s).

        Args:
            path_or_paths (`path-like` or list of `path-like`):
                Path(s) of the JSON Lines file(s).
            features ([`Features`], *optional*):
                Dataset features.
            cache_dir (str, *optional*, defaults to `"~/.cache/huggingface/datasets"`):
                Directory to cache data.
            keep_in_memory (`bool`, defaults to `False`):
                Whether to copy the data in-memory.
            **kwargs (additional keyword arguments):
                Keyword arguments to be passed to [`JsonConfig`].

        Returns:
            [`DatasetDict`]

        Example:

        ```py
        >>> from datasets import DatasetDict
        >>> ds = DatasetDict.from_json({'train': 'path/to/dataset.json'})
        ```
        """
        # Dynamic import to avoid circular dependency
        from .io.json import JsonDatasetReader

        return JsonDatasetReader(
            path_or_paths,
            features=features,
            cache_dir=cache_dir,
            keep_in_memory=keep_in_memory,
            **kwargs,
        ).read()

    @staticmethod
    def from_parquet(
        path_or_paths: dict[str, PathLike],
        features: Optional[Features] = None,
        cache_dir: str = None,
        keep_in_memory: bool = False,
        columns: Optional[list[str]] = None,
        **kwargs,
    ) -> "DatasetDict":
        """Create [`DatasetDict`] from Parquet file(s).

        Args:
            path_or_paths (`dict` of path-like):
                Path(s) of the CSV file(s).
            features ([`Features`], *optional*):
                Dataset features.
            cache_dir (`str`, *optional*, defaults to `"~/.cache/huggingface/datasets"`):
                Directory to cache data.
            keep_in_memory (`bool`, defaults to `False`):
                Whether to copy the data in-memory.
            columns (`list[str]`, *optional*):
                If not `None`, only these columns will be read from the file.
                A column name may be a prefix of a nested field, e.g. 'a' will select
                'a.b', 'a.c', and 'a.d.e'.
            **kwargs (additional keyword arguments):
                Keyword arguments to be passed to [`ParquetConfig`].

        Returns:
            [`DatasetDict`]

        Example:

        ```py
        >>> from datasets import DatasetDict
        >>> ds = DatasetDict.from_parquet({'train': 'path/to/dataset/parquet'})
        ```
        """
        # Dynamic import to avoid circular dependency
        from .io.parquet import ParquetDatasetReader

        return ParquetDatasetReader(
            path_or_paths,
            features=features,
            cache_dir=cache_dir,
            keep_in_memory=keep_in_memory,
            columns=columns,
            **kwargs,
        ).read()

    @staticmethod
    def from_text(
        path_or_paths: dict[str, PathLike],
        features: Optional[Features] = None,
        cache_dir: str = None,
        keep_in_memory: bool = False,
        **kwargs,
    ) -> "DatasetDict":
        """Create [`DatasetDict`] from text file(s).

        Args:
            path_or_paths (`dict` of path-like):
                Path(s) of the text file(s).
            features ([`Features`], *optional*):
                Dataset features.
            cache_dir (`str`, *optional*, defaults to `"~/.cache/huggingface/datasets"`):
                Directory to cache data.
            keep_in_memory (`bool`, defaults to `False`):
                Whether to copy the data in-memory.
            **kwargs (additional keyword arguments):
                Keyword arguments to be passed to [`TextConfig`].

        Returns:
            [`DatasetDict`]

        Example:

        ```py
        >>> from datasets import DatasetDict
        >>> ds = DatasetDict.from_text({'train': 'path/to/dataset.txt'})
        ```
        """
        # Dynamic import to avoid circular dependency
        from .io.text import TextDatasetReader

        return TextDatasetReader(
            path_or_paths,
            features=features,
            cache_dir=cache_dir,
            keep_in_memory=keep_in_memory,
            **kwargs,
        ).read()

    @is_documented_by(Dataset.align_labels_with_mapping)
    def align_labels_with_mapping(self, label2id: dict, label_column: str) -> "DatasetDict":
        self._check_values_type()
        return DatasetDict(
            {
                k: dataset.align_labels_with_mapping(label2id=label2id, label_column=label_column)
                for k, dataset in self.items()
            }
        )

    def push_to_hub(
        self,
        repo_id,
        config_name: str = "default",
        set_default: Optional[bool] = None,
        data_dir: Optional[str] = None,
        commit_message: Optional[str] = None,
        commit_description: Optional[str] = None,
        private: Optional[bool] = None,
        token: Optional[str] = None,
        revision: Optional[str] = None,
        create_pr: Optional[bool] = False,
        max_shard_size: Optional[Union[int, str]] = None,
        num_shards: Optional[dict[str, int]] = None,
        embed_external_files: bool = True,
    ) -> CommitInfo:
        """Pushes the [`DatasetDict`] to the hub as a Parquet dataset.
        The [`DatasetDict`] is pushed using HTTP requests and does not need to have neither git or git-lfs installed.

        Each dataset split will be pushed independently. The pushed dataset will keep the original split names.

        The resulting Parquet files are self-contained by default: if your dataset contains [`Image`] or [`Audio`]
        data, the Parquet files will store the bytes of your images or audio files.
        You can disable this by setting `embed_external_files` to False.

        Args:
            repo_id (`str`):
                The ID of the repository to push to in the following format: `<user>/<dataset_name>` or
                `<org>/<dataset_name>`. Also accepts `<dataset_name>`, which will default to the namespace
                of the logged-in user.
            config_name (`str`):
                Configuration name of a dataset. Defaults to "default".
            set_default (`bool`, *optional*):
                Whether to set this configuration as the default one. Otherwise, the default configuration is the one
                named "default".
            data_dir (`str`, *optional*):
                Directory name that will contain the uploaded data files. Defaults to the `config_name` if different
                from "default", else "data".

                <Added version="2.17.0"/>
            commit_message (`str`, *optional*):
                Message to commit while pushing. Will default to `"Upload dataset"`.
            commit_description (`str`, *optional*):
                Description of the commit that will be created.
                Additionally, description of the PR if a PR is created (`create_pr` is True).

                <Added version="2.16.0"/>
            private (`bool`, *optional*):
                Whether to make the repo private. If `None` (default), the repo will be public unless the
                organization's default is private. This value is ignored if the repo already exists.
            token (`str`, *optional*):
                An optional authentication token for the Hugging Face Hub. If no token is passed, will default
                to the token saved locally when logging in with `huggingface-cli login`. Will raise an error
                if no token is passed and the user is not logged-in.
            revision (`str`, *optional*):
                Branch to push the uploaded files to. Defaults to the `"main"` branch.

                <Added version="2.15.0"/>
            create_pr (`bool`, *optional*, defaults to `False`):
                Whether to create a PR with the uploaded files or directly commit.

                <Added version="2.15.0"/>
            max_shard_size (`int` or `str`, *optional*, defaults to `"500MB"`):
                The maximum size of the dataset shards to be uploaded to the hub. If expressed as a string, needs to be digits followed by a unit
                (like `"500MB"` or `"1GB"`).
            num_shards (`Dict[str, int]`, *optional*):
                Number of shards to write. By default, the number of shards depends on `max_shard_size`.
                Use a dictionary to define a different num_shards for each split.

                <Added version="2.8.0"/>
            embed_external_files (`bool`, defaults to `True`):
                Whether to embed file bytes in the shards.
                In particular, this will do the following before the push for the fields of type:

                - [`Audio`] and [`Image`] removes local path information and embed file content in the Parquet files.

        Return:
            huggingface_hub.CommitInfo

        Example:

        ```python
        >>> dataset_dict.push_to_hub("<organization>/<dataset_id>")
        >>> dataset_dict.push_to_hub("<organization>/<dataset_id>", private=True)
        >>> dataset_dict.push_to_hub("<organization>/<dataset_id>", max_shard_size="1GB")
        >>> dataset_dict.push_to_hub("<organization>/<dataset_id>", num_shards={"train": 1024, "test": 8})
        ```

        If you want to add a new configuration (or subset) to a dataset (e.g. if the dataset has multiple tasks/versions/languages):

        ```python
        >>> english_dataset.push_to_hub("<organization>/<dataset_id>", "en")
        >>> french_dataset.push_to_hub("<organization>/<dataset_id>", "fr")
        >>> # later
        >>> english_dataset = load_dataset("<organization>/<dataset_id>", "en")
        >>> french_dataset = load_dataset("<organization>/<dataset_id>", "fr")
        ```
        """
        if num_shards is None:
            num_shards = dict.fromkeys(self)
        elif not isinstance(num_shards, dict):
            raise ValueError(
                "Please provide one `num_shards` per dataset in the dataset dictionary, e.g. {{'train': 128, 'test': 4}}"
            )

        self._check_values_type()
        self._check_values_features()
        total_uploaded_size = 0
        total_dataset_nbytes = 0
        info_to_dump: DatasetInfo = next(iter(self.values())).info.copy()
        info_to_dump.config_name = config_name
        info_to_dump.splits = SplitDict()

        for split in self.keys():
            if not re.match(_split_re, split):
                raise ValueError(f"Split name should match '{_split_re}' but got '{split}'.")

        api = HfApi(endpoint=config.HF_ENDPOINT, token=token)

        repo_url = api.create_repo(
            repo_id,
            token=token,
            repo_type="dataset",
            private=private,
            exist_ok=True,
        )
        repo_id = repo_url.repo_id

        if revision is not None and not revision.startswith("refs/pr/"):
            # We do not call create_branch for a PR reference: 400 Bad Request
            api.create_branch(
                repo_id,
                branch=revision,
                token=token,
                repo_type="dataset",
                exist_ok=True,
            )

        if not data_dir:
            data_dir = config_name if config_name != "default" else "data"  # for backward compatibility

        additions = []
        for split in self.keys():
            logger.info(f"Pushing split {split} to the Hub.")
            # The split=key needs to be removed before merging
            split_additions, uploaded_size, dataset_nbytes = self[split]._push_parquet_shards_to_hub(
                repo_id,
                data_dir=data_dir,
                split=split,
                token=token,
                revision=revision,
                create_pr=create_pr,
                max_shard_size=max_shard_size,
                num_shards=num_shards.get(split),
                embed_external_files=embed_external_files,
            )
            additions += split_additions
            total_uploaded_size += uploaded_size
            total_dataset_nbytes += dataset_nbytes
            info_to_dump.splits[split] = SplitInfo(str(split), num_bytes=dataset_nbytes, num_examples=len(self[split]))
        info_to_dump.download_checksums = None
        info_to_dump.download_size = total_uploaded_size
        info_to_dump.dataset_size = total_dataset_nbytes
        info_to_dump.size_in_bytes = total_uploaded_size + total_dataset_nbytes

        # Check if the repo already has a README.md and/or a dataset_infos.json to update them with the new split info (size and pattern)
        # and delete old split shards (if they exist)
        repo_with_dataset_card, repo_with_dataset_infos = False, False
        repo_splits: list[str] = []  # use a list to keep the order of the splits
        deletions: list[CommitOperationDelete] = []
        repo_files_to_add = [addition.path_in_repo for addition in additions]
        for repo_file in api.list_repo_tree(
            repo_id=repo_id,
            revision=revision,
            repo_type="dataset",
            token=token,
            recursive=True,
        ):
            if not isinstance(repo_file, RepoFile):
                continue
            if repo_file.rfilename == config.REPOCARD_FILENAME:
                repo_with_dataset_card = True
            elif repo_file.rfilename == config.DATASETDICT_INFOS_FILENAME:
                repo_with_dataset_infos = True
            elif (
                repo_file.rfilename.startswith(tuple(f"{data_dir}/{split}-" for split in self.keys()))
                and repo_file.rfilename not in repo_files_to_add
            ):
                deletions.append(CommitOperationDelete(path_in_repo=repo_file.rfilename))
            elif fnmatch.fnmatch(
                repo_file.rfilename,
                PUSH_TO_HUB_WITHOUT_METADATA_CONFIGS_SPLIT_PATTERN_SHARDED.replace("{split}", "*"),
            ):
                pattern = glob_pattern_to_regex(PUSH_TO_HUB_WITHOUT_METADATA_CONFIGS_SPLIT_PATTERN_SHARDED)
                split_pattern_fields = string_to_dict(repo_file.rfilename, pattern)
                assert split_pattern_fields is not None
                repo_split = split_pattern_fields["split"]
                if repo_split not in repo_splits:
                    repo_splits.append(repo_split)

        # get the info from the README to update them
        if repo_with_dataset_card:
            dataset_card_path = api.hf_hub_download(
                repo_id,
                config.REPOCARD_FILENAME,
                repo_type="dataset",
                revision=revision,
            )
            dataset_card = DatasetCard.load(Path(dataset_card_path))
            dataset_card_data = dataset_card.data
            metadata_configs = MetadataConfigs.from_dataset_card_data(dataset_card_data)
        # get the deprecated dataset_infos.json to update them
        elif repo_with_dataset_infos:
            dataset_card = None
            dataset_card_data = DatasetCardData()
            metadata_configs = MetadataConfigs()
        else:
            dataset_card = None
            dataset_card_data = DatasetCardData()
            metadata_configs = MetadataConfigs()
        # create the metadata configs if it was uploaded with push_to_hub before metadata configs existed
        if not metadata_configs and repo_splits:
            default_metadata_configs_to_dump = {
                "data_files": [{"split": split, "path": f"data/{split}-*"} for split in repo_splits]
            }
            MetadataConfigs({"default": default_metadata_configs_to_dump}).to_dataset_card_data(dataset_card_data)
        metadata_config_to_dump = {
            "data_files": [{"split": split, "path": f"{data_dir}/{split}-*"} for split in self.keys()],
        }
        if set_default and config_name != "default":
            if metadata_configs:
                default_config_name = metadata_configs.get_default_config_name()
                if default_config_name == "default":
                    raise ValueError(
                        "There exists a configuration named 'default'. To set a different configuration as default, "
                        "rename the 'default' one first."
                    )
                else:
                    _ = metadata_configs[default_config_name].pop("default")
            metadata_config_to_dump["default"] = True
        # push to the deprecated dataset_infos.json
        if repo_with_dataset_infos:
            dataset_infos_path = api.hf_hub_download(
                repo_id,
                config.DATASETDICT_INFOS_FILENAME,
                repo_type="dataset",
                revision=revision,
            )
            with open(dataset_infos_path, encoding="utf-8") as f:
                dataset_infos: dict = json.load(f)
            dataset_infos[config_name] = asdict(info_to_dump)
            additions.append(
                CommitOperationAdd(
                    path_in_repo=config.DATASETDICT_INFOS_FILENAME,
                    path_or_fileobj=json.dumps(dataset_infos, indent=4).encode("utf-8"),
                )
            )
        # push to README
        DatasetInfosDict({config_name: info_to_dump}).to_dataset_card_data(dataset_card_data)
        MetadataConfigs({config_name: metadata_config_to_dump}).to_dataset_card_data(dataset_card_data)
        dataset_card = DatasetCard(f"---\n{dataset_card_data}\n---\n") if dataset_card is None else dataset_card
        additions.append(
            CommitOperationAdd(
                path_in_repo=config.REPOCARD_FILENAME,
                path_or_fileobj=str(dataset_card).encode(),
            )
        )

        commit_message = commit_message if commit_message is not None else "Upload dataset"
        if len(additions) <= config.UPLOADS_MAX_NUMBER_PER_COMMIT:
            commit_info = api.create_commit(
                repo_id,
                operations=additions + deletions,
                commit_message=commit_message,
                commit_description=commit_description,
                token=token,
                repo_type="dataset",
                revision=revision,
                create_pr=create_pr,
            )
        else:
            logger.info(
                f"Number of files to upload is larger than {config.UPLOADS_MAX_NUMBER_PER_COMMIT}. Splitting the push into multiple commits."
            )
            num_commits = math.ceil(len(additions) / config.UPLOADS_MAX_NUMBER_PER_COMMIT)
            for i in range(0, num_commits):
                operations = additions[
                    i * config.UPLOADS_MAX_NUMBER_PER_COMMIT : (i + 1) * config.UPLOADS_MAX_NUMBER_PER_COMMIT
                ] + (deletions if i == 0 else [])
                commit_info = api.create_commit(
                    repo_id,
                    operations=operations,
                    commit_message=commit_message + f" (part {i:05d}-of-{num_commits:05d})",
                    commit_description=commit_description,
                    token=token,
                    repo_type="dataset",
                    revision=revision,
                    create_pr=create_pr,
                )
                logger.info(
                    f"Commit #{i + 1} completed"
                    + (f" (still {num_commits - i - 1} to go)" if num_commits - i - 1 else "")
                    + "."
                )
        return commit_info


class IterableDatasetDict(dict):
    def __repr__(self):
        repr = "\n".join([f"{k}: {v}" for k, v in self.items()])
        repr = re.sub(r"^", " " * 4, repr, 0, re.M)
        return f"IterableDatasetDict({{\n{repr}\n}})"

    def with_format(
        self,
        type: Optional[str] = None,
    ) -> "IterableDatasetDict":
        """
        Return a dataset with the specified format.

        Args:

            type (`str`, *optional*):
                Either output type selected in `[None, 'numpy', 'torch', 'tensorflow', 'jax', 'arrow', 'pandas', 'polars']`.
                `None` means it returns python objects (default).

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> from transformers import AutoTokenizer
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", split="validation", streaming=True)
        >>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
        >>> ds = ds.map(lambda x: tokenizer(x['text'], truncation=True, padding=True), batched=True)
        >>> ds = ds.with_format("torch")
        >>> next(iter(ds))
        {'text': 'compassionately explores the seemingly irreconcilable situation between conservative christian parents and their estranged gay and lesbian children .',
         'label': tensor(1),
         'input_ids': tensor([  101, 18027, 16310, 16001,  1103,  9321,   178, 11604,  7235,  6617,
                1742,  2165,  2820,  1206,  6588, 22572, 12937,  1811,  2153,  1105,
                1147, 12890, 19587,  6463,  1105, 15026,  1482,   119,   102,     0,
                    0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
                    0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
                    0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
                    0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
                    0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
                    0,     0,     0,     0]),
         'token_type_ids': tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),
         'attention_mask': tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])}
        ```
        """
        return IterableDatasetDict({k: dataset.with_format(type=type) for k, dataset in self.items()})

    def map(
        self,
        function: Optional[Callable] = None,
        with_indices: bool = False,
        with_split: bool = False,
        input_columns: Optional[Union[str, list[str]]] = None,
        batched: bool = False,
        batch_size: int = 1000,
        drop_last_batch: bool = False,
        remove_columns: Optional[Union[str, list[str]]] = None,
        fn_kwargs: Optional[dict] = None,
    ) -> "IterableDatasetDict":
        """
        Apply a function to all the examples in the iterable dataset (individually or in batches) and update them.
        If your function returns a column that already exists, then it overwrites it.
        The function is applied on-the-fly on the examples when iterating over the dataset.
        The transformation is applied to all the datasets of the dataset dictionary.

        You can specify whether the function should be batched or not with the `batched` parameter:

        - If batched is `False`, then the function takes 1 example in and should return 1 example.
          An example is a dictionary, e.g. `{"text": "Hello there !"}`.
        - If batched is `True` and `batch_size` is 1, then the function takes a batch of 1 example as input and can return a batch with 1 or more examples.
          A batch is a dictionary, e.g. a batch of 1 example is `{"text": ["Hello there !"]}`.
        - If batched is `True` and `batch_size` is `n` > 1, then the function takes a batch of `n` examples as input and can return a batch with `n` examples, or with an arbitrary number of examples.
          Note that the last batch may have less than `n` examples.
          A batch is a dictionary, e.g. a batch of `n` examples is `{"text": ["Hello there !"] * n}`.

        If the function is asynchronous, then `map` will run your function in parallel, with up to one thousand simulatenous calls.
        It is recommended to use a `asyncio.Semaphore` in your function if you want to set a maximum number of operations that can run at the same time.

        Args:
            function (`Callable`, *optional*, defaults to `None`):
                Function applied on-the-fly on the examples when you iterate on the dataset.
                It must have one of the following signatures:

                - `function(example: Dict[str, Any]) -> Dict[str, Any]` if `batched=False` and `with_indices=False`
                - `function(example: Dict[str, Any], idx: int) -> Dict[str, Any]` if `batched=False` and `with_indices=True`
                - `function(batch: Dict[str, list]) -> Dict[str, list]` if `batched=True` and `with_indices=False`
                - `function(batch: Dict[str, list], indices: list[int]) -> Dict[str, list]` if `batched=True` and `with_indices=True`

                For advanced usage, the function can also return a `pyarrow.Table`.
                If the function is asynchronous, then `map` will run your function in parallel.
                Moreover if your function returns nothing (`None`), then `map` will run your function and return the dataset unchanged.
                If no function is provided, default to identity function: `lambda x: x`.
            with_indices (`bool`, defaults to `False`):
                Provide example indices to `function`. Note that in this case the signature of `function` should be `def function(example, idx[, rank]): ...`.
            input_columns (`[Union[str, list[str]]]`, *optional*, defaults to `None`):
                The columns to be passed into `function`
                as positional arguments. If `None`, a dict mapping to all formatted columns is passed as one argument.
            batched (`bool`, defaults to `False`):
                Provide batch of examples to `function`.
            batch_size (`int`, *optional*, defaults to `1000`):
                Number of examples per batch provided to `function` if `batched=True`.
            drop_last_batch (`bool`, defaults to `False`):
                Whether a last batch smaller than the `batch_size` should be
                dropped instead of being processed by the function.
            remove_columns (`[list[str]]`, *optional*, defaults to `None`):
                Remove a selection of columns while doing the mapping.
                Columns will be removed before updating the examples with the output of `function`, i.e. if `function` is adding
                columns with names in `remove_columns`, these columns will be kept.
            fn_kwargs (`Dict`, *optional*, defaults to `None`):
                Keyword arguments to be passed to `function`

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", streaming=True)
        >>> def add_prefix(example):
        ...     example["text"] = "Review: " + example["text"]
        ...     return example
        >>> ds = ds.map(add_prefix)
        >>> next(iter(ds["train"]))
        {'label': 1,
         'text': 'Review: the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'}
        ```
        """

        dataset_dict = {}
        for split, dataset in self.items():
            if with_split:
                function = bind(function, split)

            dataset_dict[split] = dataset.map(
                function=function,
                with_indices=with_indices,
                input_columns=input_columns,
                batched=batched,
                batch_size=batch_size,
                drop_last_batch=drop_last_batch,
                remove_columns=remove_columns,
                fn_kwargs=fn_kwargs,
            )

            if with_split:
                function = function.func

        return IterableDatasetDict(dataset_dict)

    def filter(
        self,
        function: Optional[Callable] = None,
        with_indices=False,
        input_columns: Optional[Union[str, list[str]]] = None,
        batched: bool = False,
        batch_size: Optional[int] = 1000,
        fn_kwargs: Optional[dict] = None,
    ) -> "IterableDatasetDict":
        """Apply a filter function to all the elements so that the dataset only includes examples according to the filter function.
        The filtering is done on-the-fly when iterating over the dataset.
        The filtering is applied to all the datasets of the dataset dictionary.

        Args:
            function (`Callable`):
                Callable with one of the following signatures:

                - `function(example: Dict[str, Any]) -> bool` if `with_indices=False, batched=False`
                - `function(example: Dict[str, Any], indices: int) -> bool` if `with_indices=True, batched=False`
                - `function(example: Dict[str, list]) -> list[bool]` if `with_indices=False, batched=True`
                - `function(example: Dict[str, list], indices: list[int]) -> list[bool]` if `with_indices=True, batched=True`

                If no function is provided, defaults to an always True function: `lambda x: True`.
            with_indices (`bool`, defaults to `False`):
                Provide example indices to `function`. Note that in this case the signature of `function` should be `def function(example, idx): ...`.
            input_columns (`str` or `list[str]`, *optional*):
                The columns to be passed into `function` as
                positional arguments. If `None`, a dict mapping to all formatted columns is passed as one argument.
            batched (`bool`, defaults to `False`):
                Provide batch of examples to `function`
            batch_size (`int`, *optional*, defaults to `1000`):
                Number of examples per batch provided to `function` if `batched=True`.
            fn_kwargs (`Dict`, *optional*, defaults to `None`):
                Keyword arguments to be passed to `function`

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", streaming=True)
        >>> ds = ds.filter(lambda x: x["label"] == 0)
        >>> list(ds["train"].take(3))
        [{'label': 0, 'text': 'Review: simplistic , silly and tedious .'},
         {'label': 0,
         'text': "Review: it's so laddish and juvenile , only teenage boys could possibly find it funny ."},
         {'label': 0,
         'text': 'Review: exploitative and largely devoid of the depth or sophistication that would make watching such a graphic treatment of the crimes bearable .'}]
        ```
        """
        return IterableDatasetDict(
            {
                k: dataset.filter(
                    function=function,
                    with_indices=with_indices,
                    input_columns=input_columns,
                    batched=batched,
                    batch_size=batch_size,
                    fn_kwargs=fn_kwargs,
                )
                for k, dataset in self.items()
            }
        )

    def shuffle(
        self,
        seed=None,
        generator: Optional[np.random.Generator] = None,
        buffer_size: int = 1000,
    ) -> "IterableDatasetDict":
        """
        Randomly shuffles the elements of this dataset.
        The shuffling is applied to all the datasets of the dataset dictionary.

        This dataset fills a buffer with buffer_size elements, then randomly samples elements from this buffer,
        replacing the selected elements with new elements. For perfect shuffling, a buffer size greater than or
        equal to the full size of the dataset is required.

        For instance, if your dataset contains 10,000 elements but `buffer_size` is set to 1000, then `shuffle` will
        initially select a random element from only the first 1000 elements in the buffer. Once an element is
        selected, its space in the buffer is replaced by the next (i.e. 1,001-st) element,
        maintaining the 1000 element buffer.

        If the dataset is made of several shards, it also does `shuffle` the order of the shards.
        However if the order has been fixed by using [`~datasets.IterableDataset.skip`] or [`~datasets.IterableDataset.take`]
        then the order of the shards is kept unchanged.

        Args:
            seed (`int`, *optional*, defaults to `None`):
                Random seed that will be used to shuffle the dataset.
                It is used to sample from the shuffle buffer and also to shuffle the data shards.
            generator (`numpy.random.Generator`, *optional*):
                Numpy random Generator to use to compute the permutation of the dataset rows.
                If `generator=None` (default), uses `np.random.default_rng` (the default BitGenerator (PCG64) of NumPy).
            buffer_size (`int`, defaults to `1000`):
                Size of the buffer.

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", streaming=True)
        >>> list(ds["train"].take(3))
        [{'label': 1,
         'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'},
         {'label': 1,
         'text': 'the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .'},
         {'label': 1, 'text': 'effective but too-tepid biopic'}]
        >>> ds = ds.shuffle(seed=42)
        >>> list(ds["train"].take(3))
        [{'label': 1,
         'text': "a sports movie with action that's exciting on the field and a story you care about off it ."},
         {'label': 1,
         'text': 'at its best , the good girl is a refreshingly adult take on adultery . . .'},
         {'label': 1,
         'text': "sam jones became a very lucky filmmaker the day wilco got dropped from their record label , proving that one man's ruin may be another's fortune ."}]
        ```
        """
        return IterableDatasetDict(
            {
                k: dataset.shuffle(seed=seed, generator=generator, buffer_size=buffer_size)
                for k, dataset in self.items()
            }
        )

    def rename_column(self, original_column_name: str, new_column_name: str) -> "IterableDatasetDict":
        """
        Rename a column in the dataset, and move the features associated to the original column under the new column
        name.
        The renaming is applied to all the datasets of the dataset dictionary.

        Args:
            original_column_name (`str`):
                Name of the column to rename.
            new_column_name (`str`):
                New name for the column.

        Returns:
            [`IterableDatasetDict`]: A copy of the dataset with a renamed column.

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", streaming=True)
        >>> ds = ds.rename_column("text", "movie_review")
        >>> next(iter(ds["train"]))
        {'label': 1,
         'movie_review': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'}
        ```
        """
        return IterableDatasetDict(
            {
                k: dataset.rename_column(
                    original_column_name=original_column_name,
                    new_column_name=new_column_name,
                )
                for k, dataset in self.items()
            }
        )

    def rename_columns(self, column_mapping: dict[str, str]) -> "IterableDatasetDict":
        """
        Rename several columns in the dataset, and move the features associated to the original columns under
        the new column names.
        The renaming is applied to all the datasets of the dataset dictionary.

        Args:
            column_mapping (`Dict[str, str]`):
                A mapping of columns to rename to their new names.

        Returns:
            [`IterableDatasetDict`]: A copy of the dataset with renamed columns

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", streaming=True)
        >>> ds = ds.rename_columns({"text": "movie_review", "label": "rating"})
        >>> next(iter(ds["train"]))
        {'movie_review': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .',
         'rating': 1}
        ```
        """
        return IterableDatasetDict(
            {k: dataset.rename_columns(column_mapping=column_mapping) for k, dataset in self.items()}
        )

    def remove_columns(self, column_names: Union[str, list[str]]) -> "IterableDatasetDict":
        """
        Remove one or several column(s) in the dataset and the features associated to them.
        The removal is done on-the-fly on the examples when iterating over the dataset.
        The removal is applied to all the datasets of the dataset dictionary.


        Args:
            column_names (`Union[str, list[str]]`):
                Name of the column(s) to remove.

        Returns:
            [`IterableDatasetDict`]: A copy of the dataset object without the columns to remove.

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", streaming=True)
        >>> ds = ds.remove_columns("label")
        >>> next(iter(ds["train"]))
        {'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'}
        ```
        """
        return IterableDatasetDict({k: dataset.remove_columns(column_names) for k, dataset in self.items()})

    def select_columns(self, column_names: Union[str, list[str]]) -> "IterableDatasetDict":
        """Select one or several column(s) in the dataset and the features
        associated to them. The selection is done on-the-fly on the examples
        when iterating over the dataset. The selection is applied to all the
        datasets of the dataset dictionary.


        Args:
            column_names (`Union[str, list[str]]`):
                Name of the column(s) to keep.

        Returns:
            [`IterableDatasetDict`]: A copy of the dataset object with only selected columns.

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", streaming=True)
        >>> ds = ds.select("text")
        >>> next(iter(ds["train"]))
        {'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'}
        ```
        """
        return IterableDatasetDict({k: dataset.select_columns(column_names) for k, dataset in self.items()})

    def cast_column(self, column: str, feature: FeatureType) -> "IterableDatasetDict":
        """Cast column to feature for decoding.
        The type casting is applied to all the datasets of the dataset dictionary.

        Args:
            column (`str`):
                Column name.
            feature ([`Feature`]):
                Target feature.

        Returns:
            [`IterableDatasetDict`]

        Example:

        ```py
        >>> from datasets import load_dataset, ClassLabel
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", streaming=True)
        >>> ds["train"].features
        {'label': ClassLabel(names=['neg', 'pos'], id=None),
         'text': Value(dtype='string', id=None)}
        >>> ds = ds.cast_column('label', ClassLabel(names=['bad', 'good']))
        >>> ds["train"].features
        {'label': ClassLabel(names=['bad', 'good'], id=None),
         'text': Value(dtype='string', id=None)}
        ```
        """
        return IterableDatasetDict(
            {k: dataset.cast_column(column=column, feature=feature) for k, dataset in self.items()}
        )

    def cast(
        self,
        features: Features,
    ) -> "IterableDatasetDict":
        """
        Cast the dataset to a new set of features.
        The type casting is applied to all the datasets of the dataset dictionary.

        Args:
            features (`Features`):
                New features to cast the dataset to.
                The name of the fields in the features must match the current column names.
                The type of the data must also be convertible from one type to the other.
                For non-trivial conversion, e.g. `string` <-> `ClassLabel` you should use [`map`] to update the Dataset.

        Returns:
            [`IterableDatasetDict`]: A copy of the dataset with casted features.

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", streaming=True)
        >>> ds["train"].features
        {'label': ClassLabel(names=['neg', 'pos'], id=None),
         'text': Value(dtype='string', id=None)}
        >>> new_features = ds["train"].features.copy()
        >>> new_features['label'] = ClassLabel(names=['bad', 'good'])
        >>> new_features['text'] = Value('large_string')
        >>> ds = ds.cast(new_features)
        >>> ds["train"].features
        {'label': ClassLabel(names=['bad', 'good'], id=None),
         'text': Value(dtype='large_string', id=None)}
        ```
        """
        return IterableDatasetDict({k: dataset.cast(features=features) for k, dataset in self.items()})