File size: 31,571 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 |
import os
import re
from functools import partial
from glob import has_magic
from pathlib import Path, PurePath
from typing import Callable, Optional, Union
import huggingface_hub
from fsspec.core import url_to_fs
from huggingface_hub import HfFileSystem
from packaging import version
from tqdm.contrib.concurrent import thread_map
from . import config
from .download import DownloadConfig
from .naming import _split_re
from .splits import Split
from .utils import logging
from .utils import tqdm as hf_tqdm
from .utils.file_utils import _prepare_path_and_storage_options, is_local_path, is_relative_path, xbasename, xjoin
from .utils.py_utils import glob_pattern_to_regex, string_to_dict
SingleOriginMetadata = Union[tuple[str, str], tuple[str], tuple[()]]
SANITIZED_DEFAULT_SPLIT = str(Split.TRAIN)
logger = logging.get_logger(__name__)
class Url(str):
pass
class EmptyDatasetError(FileNotFoundError):
pass
SPLIT_PATTERN_SHARDED = "data/{split}-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]*.*"
SPLIT_KEYWORDS = {
Split.TRAIN: ["train", "training"],
Split.VALIDATION: ["validation", "valid", "dev", "val"],
Split.TEST: ["test", "testing", "eval", "evaluation"],
}
NON_WORDS_CHARS = "-._ 0-9"
if config.FSSPEC_VERSION < version.parse("2023.9.0"):
KEYWORDS_IN_FILENAME_BASE_PATTERNS = ["**[{sep}/]{keyword}[{sep}]*", "{keyword}[{sep}]*"]
KEYWORDS_IN_DIR_NAME_BASE_PATTERNS = [
"{keyword}/**",
"{keyword}[{sep}]*/**",
"**[{sep}/]{keyword}/**",
"**[{sep}/]{keyword}[{sep}]*/**",
]
elif config.FSSPEC_VERSION < version.parse("2023.12.0"):
KEYWORDS_IN_FILENAME_BASE_PATTERNS = ["**/*[{sep}/]{keyword}[{sep}]*", "{keyword}[{sep}]*"]
KEYWORDS_IN_DIR_NAME_BASE_PATTERNS = [
"{keyword}/**/*",
"{keyword}[{sep}]*/**/*",
"**/*[{sep}/]{keyword}/**/*",
"**/*[{sep}/]{keyword}[{sep}]*/**/*",
]
else:
KEYWORDS_IN_FILENAME_BASE_PATTERNS = ["**/{keyword}[{sep}]*", "**/*[{sep}]{keyword}[{sep}]*"]
KEYWORDS_IN_DIR_NAME_BASE_PATTERNS = [
"**/{keyword}/**",
"**/{keyword}[{sep}]*/**",
"**/*[{sep}]{keyword}/**",
"**/*[{sep}]{keyword}[{sep}]*/**",
]
DEFAULT_SPLITS = [Split.TRAIN, Split.VALIDATION, Split.TEST]
DEFAULT_PATTERNS_SPLIT_IN_FILENAME = {
split: [
pattern.format(keyword=keyword, sep=NON_WORDS_CHARS)
for keyword in SPLIT_KEYWORDS[split]
for pattern in KEYWORDS_IN_FILENAME_BASE_PATTERNS
]
for split in DEFAULT_SPLITS
}
DEFAULT_PATTERNS_SPLIT_IN_DIR_NAME = {
split: [
pattern.format(keyword=keyword, sep=NON_WORDS_CHARS)
for keyword in SPLIT_KEYWORDS[split]
for pattern in KEYWORDS_IN_DIR_NAME_BASE_PATTERNS
]
for split in DEFAULT_SPLITS
}
DEFAULT_PATTERNS_ALL = {
Split.TRAIN: ["**"],
}
ALL_SPLIT_PATTERNS = [SPLIT_PATTERN_SHARDED]
ALL_DEFAULT_PATTERNS = [
DEFAULT_PATTERNS_SPLIT_IN_DIR_NAME,
DEFAULT_PATTERNS_SPLIT_IN_FILENAME,
DEFAULT_PATTERNS_ALL,
]
WILDCARD_CHARACTERS = "*[]"
FILES_TO_IGNORE = [
"README.md",
"config.json",
"dataset_info.json",
"dataset_infos.json",
"dummy_data.zip",
"dataset_dict.json",
]
def contains_wildcards(pattern: str) -> bool:
return any(wildcard_character in pattern for wildcard_character in WILDCARD_CHARACTERS)
def sanitize_patterns(patterns: Union[dict, list, str]) -> dict[str, Union[list[str], "DataFilesList"]]:
"""
Take the data_files patterns from the user, and format them into a dictionary.
Each key is the name of the split, and each value is a list of data files patterns (paths or urls).
The default split is "train".
Returns:
patterns: dictionary of split_name -> list of patterns
"""
if isinstance(patterns, dict):
return {str(key): value if isinstance(value, list) else [value] for key, value in patterns.items()}
elif isinstance(patterns, str):
return {SANITIZED_DEFAULT_SPLIT: [patterns]}
elif isinstance(patterns, list):
if any(isinstance(pattern, dict) for pattern in patterns):
for pattern in patterns:
if not (
isinstance(pattern, dict)
and len(pattern) == 2
and "split" in pattern
and isinstance(pattern.get("path"), (str, list))
):
raise ValueError(
f"Expected each split to have a 'path' key which can be a string or a list of strings, but got {pattern}"
)
splits = [pattern["split"] for pattern in patterns]
if len(set(splits)) != len(splits):
raise ValueError(f"Some splits are duplicated in data_files: {splits}")
return {
str(pattern["split"]): pattern["path"] if isinstance(pattern["path"], list) else [pattern["path"]]
for pattern in patterns
}
else:
return {SANITIZED_DEFAULT_SPLIT: patterns}
else:
return sanitize_patterns(list(patterns))
def _is_inside_unrequested_special_dir(matched_rel_path: str, pattern: str) -> bool:
"""
When a path matches a pattern, we additionally check if it's inside a special directory
we ignore by default (if it starts with a double underscore).
Users can still explicitly request a filepath inside such a directory if "__pycache__" is
mentioned explicitly in the requested pattern.
Some examples:
base directory:
./
βββ __pycache__
βββ b.txt
>>> _is_inside_unrequested_special_dir("__pycache__/b.txt", "**")
True
>>> _is_inside_unrequested_special_dir("__pycache__/b.txt", "*/b.txt")
True
>>> _is_inside_unrequested_special_dir("__pycache__/b.txt", "__pycache__/*")
False
>>> _is_inside_unrequested_special_dir("__pycache__/b.txt", "__*/*")
False
"""
# We just need to check if every special directories from the path is present explicitly in the pattern.
# Since we assume that the path matches the pattern, it's equivalent to counting that both
# the parent path and the parent pattern have the same number of special directories.
data_dirs_to_ignore_in_path = [part for part in PurePath(matched_rel_path).parent.parts if part.startswith("__")]
data_dirs_to_ignore_in_pattern = [part for part in PurePath(pattern).parent.parts if part.startswith("__")]
return len(data_dirs_to_ignore_in_path) != len(data_dirs_to_ignore_in_pattern)
def _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(matched_rel_path: str, pattern: str) -> bool:
"""
When a path matches a pattern, we additionally check if it's a hidden file or if it's inside
a hidden directory we ignore by default, i.e. if the file name or a parent directory name starts with a dot.
Users can still explicitly request a filepath that is hidden or is inside a hidden directory
if the hidden part is mentioned explicitly in the requested pattern.
Some examples:
base directory:
./
βββ .hidden_file.txt
>>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_file.txt", "**")
True
>>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_file.txt", ".*")
False
base directory:
./
βββ .hidden_dir
βββ a.txt
>>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_dir/a.txt", "**")
True
>>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_dir/a.txt", ".*/*")
False
>>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_dir/a.txt", ".hidden_dir/*")
False
base directory:
./
βββ .hidden_dir
βββ .hidden_file.txt
>>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_dir/.hidden_file.txt", "**")
True
>>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_dir/.hidden_file.txt", ".*/*")
True
>>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_dir/.hidden_file.txt", ".*/.*")
False
>>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_dir/.hidden_file.txt", ".hidden_dir/*")
True
>>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_dir/.hidden_file.txt", ".hidden_dir/.*")
False
"""
# We just need to check if every hidden part from the path is present explicitly in the pattern.
# Since we assume that the path matches the pattern, it's equivalent to counting that both
# the path and the pattern have the same number of hidden parts.
hidden_directories_in_path = [
part for part in PurePath(matched_rel_path).parts if part.startswith(".") and not set(part) == {"."}
]
hidden_directories_in_pattern = [
part for part in PurePath(pattern).parts if part.startswith(".") and not set(part) == {"."}
]
return len(hidden_directories_in_path) != len(hidden_directories_in_pattern)
def _get_data_files_patterns(pattern_resolver: Callable[[str], list[str]]) -> dict[str, list[str]]:
"""
Get the default pattern from a directory or repository by testing all the supported patterns.
The first patterns to return a non-empty list of data files is returned.
In order, it first tests if SPLIT_PATTERN_SHARDED works, otherwise it tests the patterns in ALL_DEFAULT_PATTERNS.
"""
# first check the split patterns like data/{split}-00000-of-00001.parquet
for split_pattern in ALL_SPLIT_PATTERNS:
pattern = split_pattern.replace("{split}", "*")
try:
data_files = pattern_resolver(pattern)
except FileNotFoundError:
continue
if len(data_files) > 0:
splits: set[str] = set()
for p in data_files:
p_parts = string_to_dict(xbasename(p), glob_pattern_to_regex(xbasename(split_pattern)))
assert p_parts is not None
splits.add(p_parts["split"])
if any(not re.match(_split_re, split) for split in splits):
raise ValueError(f"Split name should match '{_split_re}'' but got '{splits}'.")
sorted_splits = [str(split) for split in DEFAULT_SPLITS if split in splits] + sorted(
splits - {str(split) for split in DEFAULT_SPLITS}
)
return {split: [split_pattern.format(split=split)] for split in sorted_splits}
# then check the default patterns based on train/valid/test splits
for patterns_dict in ALL_DEFAULT_PATTERNS:
non_empty_splits = []
for split, patterns in patterns_dict.items():
for pattern in patterns:
try:
data_files = pattern_resolver(pattern)
except FileNotFoundError:
continue
if len(data_files) > 0:
non_empty_splits.append(split)
break
if non_empty_splits:
return {split: patterns_dict[split] for split in non_empty_splits}
raise FileNotFoundError(f"Couldn't resolve pattern {pattern} with resolver {pattern_resolver}")
def resolve_pattern(
pattern: str,
base_path: str,
allowed_extensions: Optional[list[str]] = None,
download_config: Optional[DownloadConfig] = None,
) -> list[str]:
"""
Resolve the paths and URLs of the data files from the pattern passed by the user.
You can use patterns to resolve multiple local files. Here are a few examples:
- *.csv to match all the CSV files at the first level
- **.csv to match all the CSV files at any level
- data/* to match all the files inside "data"
- data/** to match all the files inside "data" and its subdirectories
The patterns are resolved using the fsspec glob. In fsspec>=2023.12.0 this is equivalent to
Python's glob.glob, Path.glob, Path.match and fnmatch where ** is unsupported with a prefix/suffix
other than a forward slash /.
More generally:
- '*' matches any character except a forward-slash (to match just the file or directory name)
- '**' matches any character including a forward-slash /
Hidden files and directories (i.e. whose names start with a dot) are ignored, unless they are explicitly requested.
The same applies to special directories that start with a double underscore like "__pycache__".
You can still include one if the pattern explicitly mentions it:
- to include a hidden file: "*/.hidden.txt" or "*/.*"
- to include a hidden directory: ".hidden/*" or ".*/*"
- to include a special directory: "__special__/*" or "__*/*"
Example::
>>> from datasets.data_files import resolve_pattern
>>> base_path = "."
>>> resolve_pattern("docs/**/*.py", base_path)
[/Users/mariosasko/Desktop/projects/datasets/docs/source/_config.py']
Args:
pattern (str): Unix pattern or paths or URLs of the data files to resolve.
The paths can be absolute or relative to base_path.
Remote filesystems using fsspec are supported, e.g. with the hf:// protocol.
base_path (str): Base path to use when resolving relative paths.
allowed_extensions (Optional[list], optional): White-list of file extensions to use. Defaults to None (all extensions).
For example: allowed_extensions=[".csv", ".json", ".txt", ".parquet"]
download_config ([`DownloadConfig`], *optional*): Specific download configuration parameters.
Returns:
List[str]: List of paths or URLs to the local or remote files that match the patterns.
"""
if is_relative_path(pattern):
pattern = xjoin(base_path, pattern)
elif is_local_path(pattern):
base_path = os.path.splitdrive(pattern)[0] + os.sep
else:
base_path = ""
pattern, storage_options = _prepare_path_and_storage_options(pattern, download_config=download_config)
fs, fs_pattern = url_to_fs(pattern, **storage_options)
files_to_ignore = set(FILES_TO_IGNORE) - {xbasename(pattern)}
protocol = fs.protocol if isinstance(fs.protocol, str) else fs.protocol[0]
protocol_prefix = protocol + "://" if protocol != "file" else ""
glob_kwargs = {}
if protocol == "hf" and config.HF_HUB_VERSION >= version.parse("0.20.0"):
# 10 times faster glob with detail=True (ignores costly info like lastCommit)
glob_kwargs["expand_info"] = False
matched_paths = [
filepath if filepath.startswith(protocol_prefix) else protocol_prefix + filepath
for filepath, info in fs.glob(pattern, detail=True, **glob_kwargs).items()
if (info["type"] == "file" or (info.get("islink") and os.path.isfile(os.path.realpath(filepath))))
and (xbasename(filepath) not in files_to_ignore)
and not _is_inside_unrequested_special_dir(filepath, fs_pattern)
and not _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(filepath, fs_pattern)
] # ignore .ipynb and __pycache__, but keep /../
if allowed_extensions is not None:
out = [
filepath
for filepath in matched_paths
if any("." + suffix in allowed_extensions for suffix in xbasename(filepath).split(".")[1:])
]
if len(out) < len(matched_paths):
invalid_matched_files = list(set(matched_paths) - set(out))
logger.info(
f"Some files matched the pattern '{pattern}' but don't have valid data file extensions: {invalid_matched_files}"
)
else:
out = matched_paths
if not out:
error_msg = f"Unable to find '{pattern}'"
if allowed_extensions is not None:
error_msg += f" with any supported extension {list(allowed_extensions)}"
raise FileNotFoundError(error_msg)
return out
def get_data_patterns(base_path: str, download_config: Optional[DownloadConfig] = None) -> dict[str, list[str]]:
"""
Get the default pattern from a directory testing all the supported patterns.
The first patterns to return a non-empty list of data files is returned.
Some examples of supported patterns:
Input:
my_dataset_repository/
βββ README.md
βββ dataset.csv
Output:
{'train': ['**']}
Input:
my_dataset_repository/
βββ README.md
βββ train.csv
βββ test.csv
my_dataset_repository/
βββ README.md
βββ data/
βββ train.csv
βββ test.csv
my_dataset_repository/
βββ README.md
βββ train_0.csv
βββ train_1.csv
βββ train_2.csv
βββ train_3.csv
βββ test_0.csv
βββ test_1.csv
Output:
{'train': ['**/train[-._ 0-9]*', '**/*[-._ 0-9]train[-._ 0-9]*', '**/training[-._ 0-9]*', '**/*[-._ 0-9]training[-._ 0-9]*'],
'test': ['**/test[-._ 0-9]*', '**/*[-._ 0-9]test[-._ 0-9]*', '**/testing[-._ 0-9]*', '**/*[-._ 0-9]testing[-._ 0-9]*', ...]}
Input:
my_dataset_repository/
βββ README.md
βββ data/
βββ train/
β βββ shard_0.csv
β βββ shard_1.csv
β βββ shard_2.csv
β βββ shard_3.csv
βββ test/
βββ shard_0.csv
βββ shard_1.csv
Output:
{'train': ['**/train/**', '**/train[-._ 0-9]*/**', '**/*[-._ 0-9]train/**', '**/*[-._ 0-9]train[-._ 0-9]*/**', ...],
'test': ['**/test/**', '**/test[-._ 0-9]*/**', '**/*[-._ 0-9]test/**', '**/*[-._ 0-9]test[-._ 0-9]*/**', ...]}
Input:
my_dataset_repository/
βββ README.md
βββ data/
βββ train-00000-of-00003.csv
βββ train-00001-of-00003.csv
βββ train-00002-of-00003.csv
βββ test-00000-of-00001.csv
βββ random-00000-of-00003.csv
βββ random-00001-of-00003.csv
βββ random-00002-of-00003.csv
Output:
{'train': ['data/train-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]*.*'],
'test': ['data/test-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]*.*'],
'random': ['data/random-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]*.*']}
In order, it first tests if SPLIT_PATTERN_SHARDED works, otherwise it tests the patterns in ALL_DEFAULT_PATTERNS.
"""
resolver = partial(resolve_pattern, base_path=base_path, download_config=download_config)
try:
return _get_data_files_patterns(resolver)
except FileNotFoundError:
raise EmptyDatasetError(f"The directory at {base_path} doesn't contain any data files") from None
def _get_single_origin_metadata(
data_file: str,
download_config: Optional[DownloadConfig] = None,
) -> SingleOriginMetadata:
data_file, storage_options = _prepare_path_and_storage_options(data_file, download_config=download_config)
fs, *_ = url_to_fs(data_file, **storage_options)
if isinstance(fs, HfFileSystem):
resolved_path = fs.resolve_path(data_file)
return resolved_path.repo_id, resolved_path.revision
elif data_file.startswith(config.HF_ENDPOINT):
hffs = HfFileSystem(endpoint=config.HF_ENDPOINT, token=download_config.token)
data_file = "hf://" + data_file[len(config.HF_ENDPOINT) + 1 :].replace("/resolve/", "@", 1)
resolved_path = hffs.resolve_path(data_file)
return resolved_path.repo_id, resolved_path.revision
info = fs.info(data_file)
# s3fs uses "ETag", gcsfs uses "etag", and for local we simply check mtime
for key in ["ETag", "etag", "mtime"]:
if key in info:
return (str(info[key]),)
return ()
def _get_origin_metadata(
data_files: list[str],
download_config: Optional[DownloadConfig] = None,
max_workers: Optional[int] = None,
) -> list[SingleOriginMetadata]:
max_workers = max_workers if max_workers is not None else config.HF_DATASETS_MULTITHREADING_MAX_WORKERS
return thread_map(
partial(_get_single_origin_metadata, download_config=download_config),
data_files,
max_workers=max_workers,
tqdm_class=hf_tqdm,
desc="Resolving data files",
# set `disable=None` rather than `disable=False` by default to disable progress bar when no TTY attached
disable=len(data_files) <= 16 or None,
)
class DataFilesList(list[str]):
"""
List of data files (absolute local paths or URLs).
It has two construction methods given the user's data files patterns:
- ``from_hf_repo``: resolve patterns inside a dataset repository
- ``from_local_or_remote``: resolve patterns from a local path
Moreover, DataFilesList has an additional attribute ``origin_metadata``.
It can store:
- the last modified time of local files
- ETag of remote files
- commit sha of a dataset repository
Thanks to this additional attribute, it is possible to hash the list
and get a different hash if and only if at least one file changed.
This is useful for caching Dataset objects that are obtained from a list of data files.
"""
def __init__(self, data_files: list[str], origin_metadata: list[SingleOriginMetadata]) -> None:
super().__init__(data_files)
self.origin_metadata = origin_metadata
def __add__(self, other: "DataFilesList") -> "DataFilesList":
return DataFilesList([*self, *other], self.origin_metadata + other.origin_metadata)
@classmethod
def from_hf_repo(
cls,
patterns: list[str],
dataset_info: huggingface_hub.hf_api.DatasetInfo,
base_path: Optional[str] = None,
allowed_extensions: Optional[list[str]] = None,
download_config: Optional[DownloadConfig] = None,
) -> "DataFilesList":
base_path = f"hf://datasets/{dataset_info.id}@{dataset_info.sha}/{base_path or ''}".rstrip("/")
return cls.from_patterns(
patterns, base_path=base_path, allowed_extensions=allowed_extensions, download_config=download_config
)
@classmethod
def from_local_or_remote(
cls,
patterns: list[str],
base_path: Optional[str] = None,
allowed_extensions: Optional[list[str]] = None,
download_config: Optional[DownloadConfig] = None,
) -> "DataFilesList":
base_path = base_path if base_path is not None else Path().resolve().as_posix()
return cls.from_patterns(
patterns, base_path=base_path, allowed_extensions=allowed_extensions, download_config=download_config
)
@classmethod
def from_patterns(
cls,
patterns: list[str],
base_path: Optional[str] = None,
allowed_extensions: Optional[list[str]] = None,
download_config: Optional[DownloadConfig] = None,
) -> "DataFilesList":
base_path = base_path if base_path is not None else Path().resolve().as_posix()
data_files = []
for pattern in patterns:
try:
data_files.extend(
resolve_pattern(
pattern,
base_path=base_path,
allowed_extensions=allowed_extensions,
download_config=download_config,
)
)
except FileNotFoundError:
if not has_magic(pattern):
raise
origin_metadata = _get_origin_metadata(data_files, download_config=download_config)
return cls(data_files, origin_metadata)
def filter(
self, *, extensions: Optional[list[str]] = None, file_names: Optional[list[str]] = None
) -> "DataFilesList":
patterns = []
if extensions:
ext_pattern = "|".join(re.escape(ext) for ext in extensions)
patterns.append(re.compile(f".*({ext_pattern})(\\..+)?$"))
if file_names:
fn_pattern = "|".join(re.escape(fn) for fn in file_names)
patterns.append(re.compile(rf".*[\/]?({fn_pattern})$"))
if patterns:
return DataFilesList(
[data_file for data_file in self if any(pattern.match(data_file) for pattern in patterns)],
origin_metadata=self.origin_metadata,
)
else:
return DataFilesList(list(self), origin_metadata=self.origin_metadata)
class DataFilesDict(dict[str, DataFilesList]):
"""
Dict of split_name -> list of data files (absolute local paths or URLs).
It has two construction methods given the user's data files patterns :
- ``from_hf_repo``: resolve patterns inside a dataset repository
- ``from_local_or_remote``: resolve patterns from a local path
Moreover, each list is a DataFilesList. It is possible to hash the dictionary
and get a different hash if and only if at least one file changed.
For more info, see [`DataFilesList`].
This is useful for caching Dataset objects that are obtained from a list of data files.
Changing the order of the keys of this dictionary also doesn't change its hash.
"""
@classmethod
def from_local_or_remote(
cls,
patterns: dict[str, Union[list[str], DataFilesList]],
base_path: Optional[str] = None,
allowed_extensions: Optional[list[str]] = None,
download_config: Optional[DownloadConfig] = None,
) -> "DataFilesDict":
out = cls()
for key, patterns_for_key in patterns.items():
out[key] = (
patterns_for_key
if isinstance(patterns_for_key, DataFilesList)
else DataFilesList.from_local_or_remote(
patterns_for_key,
base_path=base_path,
allowed_extensions=allowed_extensions,
download_config=download_config,
)
)
return out
@classmethod
def from_hf_repo(
cls,
patterns: dict[str, Union[list[str], DataFilesList]],
dataset_info: huggingface_hub.hf_api.DatasetInfo,
base_path: Optional[str] = None,
allowed_extensions: Optional[list[str]] = None,
download_config: Optional[DownloadConfig] = None,
) -> "DataFilesDict":
out = cls()
for key, patterns_for_key in patterns.items():
out[key] = (
patterns_for_key
if isinstance(patterns_for_key, DataFilesList)
else DataFilesList.from_hf_repo(
patterns_for_key,
dataset_info=dataset_info,
base_path=base_path,
allowed_extensions=allowed_extensions,
download_config=download_config,
)
)
return out
@classmethod
def from_patterns(
cls,
patterns: dict[str, Union[list[str], DataFilesList]],
base_path: Optional[str] = None,
allowed_extensions: Optional[list[str]] = None,
download_config: Optional[DownloadConfig] = None,
) -> "DataFilesDict":
out = cls()
for key, patterns_for_key in patterns.items():
out[key] = (
patterns_for_key
if isinstance(patterns_for_key, DataFilesList)
else DataFilesList.from_patterns(
patterns_for_key,
base_path=base_path,
allowed_extensions=allowed_extensions,
download_config=download_config,
)
)
return out
def filter(
self, *, extensions: Optional[list[str]] = None, file_names: Optional[list[str]] = None
) -> "DataFilesDict":
out = type(self)()
for key, data_files_list in self.items():
out[key] = data_files_list.filter(extensions=extensions, file_names=file_names)
return out
class DataFilesPatternsList(list[str]):
"""
List of data files patterns (absolute local paths or URLs).
For each pattern there should also be a list of allowed extensions
to keep, or a None ot keep all the files for the pattern.
"""
def __init__(
self,
patterns: list[str],
allowed_extensions: list[Optional[list[str]]],
):
super().__init__(patterns)
self.allowed_extensions = allowed_extensions
def __add__(self, other):
return DataFilesList([*self, *other], self.allowed_extensions + other.allowed_extensions)
@classmethod
def from_patterns(
cls, patterns: list[str], allowed_extensions: Optional[list[str]] = None
) -> "DataFilesPatternsList":
return cls(patterns, [allowed_extensions] * len(patterns))
def resolve(
self,
base_path: str,
download_config: Optional[DownloadConfig] = None,
) -> "DataFilesList":
base_path = base_path if base_path is not None else Path().resolve().as_posix()
data_files = []
for pattern, allowed_extensions in zip(self, self.allowed_extensions):
try:
data_files.extend(
resolve_pattern(
pattern,
base_path=base_path,
allowed_extensions=allowed_extensions,
download_config=download_config,
)
)
except FileNotFoundError:
if not has_magic(pattern):
raise
origin_metadata = _get_origin_metadata(data_files, download_config=download_config)
return DataFilesList(data_files, origin_metadata)
def filter_extensions(self, extensions: list[str]) -> "DataFilesPatternsList":
return DataFilesPatternsList(
self, [allowed_extensions + extensions for allowed_extensions in self.allowed_extensions]
)
class DataFilesPatternsDict(dict[str, DataFilesPatternsList]):
"""
Dict of split_name -> list of data files patterns (absolute local paths or URLs).
"""
@classmethod
def from_patterns(
cls, patterns: dict[str, list[str]], allowed_extensions: Optional[list[str]] = None
) -> "DataFilesPatternsDict":
out = cls()
for key, patterns_for_key in patterns.items():
out[key] = (
patterns_for_key
if isinstance(patterns_for_key, DataFilesPatternsList)
else DataFilesPatternsList.from_patterns(
patterns_for_key,
allowed_extensions=allowed_extensions,
)
)
return out
def resolve(
self,
base_path: str,
download_config: Optional[DownloadConfig] = None,
) -> "DataFilesDict":
out = DataFilesDict()
for key, data_files_patterns_list in self.items():
out[key] = data_files_patterns_list.resolve(base_path, download_config)
return out
def filter_extensions(self, extensions: list[str]) -> "DataFilesPatternsDict":
out = type(self)()
for key, data_files_patterns_list in self.items():
out[key] = data_files_patterns_list.filter_extensions(extensions)
return out
|