File size: 6,456 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import torch
from torch.utils.data import DataLoader

from accelerate.utils.dataclasses import DistributedType


class RegressionDataset:
    def __init__(self, a=2, b=3, length=64, seed=None):
        rng = np.random.default_rng(seed)
        self.length = length
        self.x = rng.normal(size=(length,)).astype(np.float32)
        self.y = a * self.x + b + rng.normal(scale=0.1, size=(length,)).astype(np.float32)

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        return {"x": self.x[i], "y": self.y[i]}


class RegressionModel4XPU(torch.nn.Module):
    def __init__(self, a=0, b=0, double_output=False):
        super().__init__()
        self.a = torch.nn.Parameter(torch.tensor([2, 3]).float())
        self.b = torch.nn.Parameter(torch.tensor([2, 3]).float())
        self.first_batch = True

    def forward(self, x=None):
        if self.first_batch:
            print(f"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}")
            self.first_batch = False
        return x * self.a[0] + self.b[0]


class RegressionModel(torch.nn.Module):
    def __init__(self, a=0, b=0, double_output=False):
        super().__init__()
        self.a = torch.nn.Parameter(torch.tensor(a).float())
        self.b = torch.nn.Parameter(torch.tensor(b).float())
        self.first_batch = True

    def forward(self, x=None):
        if self.first_batch:
            print(f"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}")
            self.first_batch = False
        return x * self.a + self.b


def mocked_dataloaders(accelerator, batch_size: int = 16):
    from datasets import load_dataset
    from transformers import AutoTokenizer

    tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
    data_files = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"}
    datasets = load_dataset("csv", data_files=data_files)
    label_list = datasets["train"].unique("label")

    label_to_id = {v: i for i, v in enumerate(label_list)}

    def tokenize_function(examples):
        # max_length=None => use the model max length (it's actually the default)
        outputs = tokenizer(
            examples["sentence1"], examples["sentence2"], truncation=True, max_length=None, padding="max_length"
        )
        if "label" in examples:
            outputs["labels"] = [label_to_id[l] for l in examples["label"]]
        return outputs

    # Apply the method we just defined to all the examples in all the splits of the dataset
    tokenized_datasets = datasets.map(
        tokenize_function,
        batched=True,
        remove_columns=["sentence1", "sentence2", "label"],
    )

    def collate_fn(examples):
        # On TPU it's best to pad everything to the same length or training will be very slow.
        if accelerator.distributed_type == DistributedType.XLA:
            return tokenizer.pad(examples, padding="max_length", max_length=128, return_tensors="pt")
        return tokenizer.pad(examples, padding="longest", return_tensors="pt")

    # Instantiate dataloaders.
    train_dataloader = DataLoader(tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=2)
    eval_dataloader = DataLoader(tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=1)

    return train_dataloader, eval_dataloader


def mocked_dataloaders_for_autoregressive_models(accelerator, batch_size: int = 16):
    from datasets import load_dataset
    from transformers import AutoTokenizer

    tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM-360M")
    tokenizer.pad_token = tokenizer.eos_token

    data_files = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"}
    datasets = load_dataset("csv", data_files=data_files)

    def tokenize_function(examples):
        # max_length=None => use the model max length (it's actually the default)
        outputs = tokenizer(examples["sentence1"], truncation=True, max_length=None, return_attention_mask=False)
        return outputs

    # Apply the method we just defined to all the examples in all the splits of the dataset
    # starting with the main process first:
    with accelerator.main_process_first():
        tokenized_datasets = datasets.map(
            tokenize_function,
            batched=True,
            remove_columns=["sentence1", "sentence2", "label"],
        )

    def collate_fn(examples):
        # On TPU it's best to pad everything to the same length or training will be very slow.
        max_length = (
            128
            if accelerator.distributed_type == DistributedType.XLA
            else max([len(e["input_ids"]) for e in examples])
        )
        # When using mixed precision we want round multiples of 8/16
        if accelerator.mixed_precision == "fp8":
            pad_to_multiple_of = 16
        elif accelerator.mixed_precision != "no":
            pad_to_multiple_of = 8
        else:
            pad_to_multiple_of = None

        batch = tokenizer.pad(
            examples,
            padding="max_length",
            max_length=max_length + 1,
            pad_to_multiple_of=pad_to_multiple_of,
            return_tensors="pt",
        )

        batch["labels"] = batch["input_ids"][:, 1:]
        batch["input_ids"] = batch["input_ids"][:, :-1]

        batch["labels"] = torch.where(batch["labels"] == tokenizer.pad_token_id, -100, batch["labels"])

        return batch

    # Instantiate dataloaders.
    train_dataloader = DataLoader(tokenized_datasets["train"], shuffle=False, collate_fn=collate_fn, batch_size=2)
    eval_dataloader = DataLoader(tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=1)

    return train_dataloader, eval_dataloader