File size: 55,981 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 |
# coding=utf-8
# Copyright 2025 MMaDA Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
os.environ["TOKENIZERS_PARALLELISM"] = "true"
import json
import pandas
import logging
import math
import shutil
import time
import html
from pathlib import Path
from typing import Union
import numpy as np
from PIL import Image
from omegaconf import OmegaConf
import wandb
import torch
from torch.optim import AdamW
from lightning.pytorch.utilities import CombinedLoader
from transformers import AutoTokenizer, AutoConfig
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import DistributedType, set_seed
from training.data import Text2ImageDataset
from training.utils import get_config, flatten_omega_conf, image_transform, image_transform_squash
from training.imagenet_dataset import ImageNetDataset
from parquet import RefinedWebDataset, ChatDataset
from models import MAGVITv2, get_mask_schedule, MMadaModelLM, MMadaConfig
from training.prompting_utils import UniversalPrompting
from models.lr_schedulers import get_scheduler
from models.logging import set_verbosity_info, set_verbosity_error
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from training.utils import get_config, flatten_omega_conf, mask_or_random_replace_tokens, AverageMeter
from torchmetrics.functional.multimodal import clip_score
from functools import partial
import ImageReward as RM
try:
import apex
is_apex_available = True
except ImportError:
is_apex_available = False
logger = get_logger(__name__, log_level="INFO")
def get_vq_model_class(model_type):
if model_type == "magvitv2":
return MAGVITv2
elif model_type == "vq16":
return VQ_16
else:
raise ValueError(f"model_type {model_type} not supported.")
def main():
#########################
# SETUP Accelerator #
#########################
config = get_config()
# Enable TF32 on Ampere GPUs
if config.training.enable_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
config.experiment.logging_dir = str(Path(config.experiment.output_dir) / "logs")
accelerator = Accelerator(
gradient_accumulation_steps=config.training.gradient_accumulation_steps,
mixed_precision=config.training.mixed_precision,
log_with="wandb",
project_dir=config.experiment.logging_dir,
split_batches=True,
)
total_batch_size_per_gpu = (config.training.batch_size_t2i
+ config.training.batch_size_lm
+ config.training.batch_size_mmu)
total_batch_size = (
(config.training.batch_size_t2i + config.training.batch_size_lm + config.training.batch_size_mmu)
* accelerator.num_processes * config.training.gradient_accumulation_steps
)
if accelerator.distributed_type == DistributedType.DEEPSPEED:
accelerator.state.deepspeed_plugin.deepspeed_config["train_micro_batch_size_per_gpu"] = (
total_batch_size_per_gpu
)
#####################################
# SETUP LOGGING, SEED and CONFIG #
#####################################
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
set_verbosity_info()
else:
set_verbosity_error()
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
resume_wandb_run = config.wandb.resume
run_id = config.wandb.get("run_id", None)
if run_id is None:
resume_wandb_run = False
run_id = wandb.util.generate_id()
config.wandb.run_id = run_id
wandb_init_kwargs = dict(
name=config.experiment.name,
id=run_id,
resume=resume_wandb_run,
entity=config.wandb.get("entity", None),
config_exclude_keys=[],
)
wandb_config = {k: v for k, v in flatten_omega_conf(config, resolve=True)}
wandb_config.pop("experiment.resume_from_checkpoint")
accelerator.init_trackers(
config.experiment.project,
config=wandb_config,
init_kwargs={"wandb": wandb_init_kwargs},
)
if accelerator.is_main_process:
os.makedirs(config.experiment.output_dir, exist_ok=True)
config_path = Path(config.experiment.output_dir) / "config.yaml"
logging.info(f"Saving config to {config_path}")
OmegaConf.save(config, config_path)
# If passed along, set the training seed now.
if config.training.seed is not None:
set_seed(config.training.seed)
#########################
# MODELS and OPTIMIZER #
#########################
logger.info("Loading models and optimizer")
tokenizer = AutoTokenizer.from_pretrained(config.model.mmada.tokenizer_path, padding_side="left")
uni_prompting = UniversalPrompting(tokenizer, max_text_len=config.dataset.preprocessing.max_seq_length,
special_tokens=(
"<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>",
"<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"
),
ignore_id=-100, cond_dropout_prob=config.training.cond_dropout_prob, use_reserved_token=True)
print('special tokens : \n', uni_prompting.sptids_dict)
# VQ model for processing image into discrete tokens
vq_model = get_vq_model_class(config.model.vq_model.type)
if config.model.vq_model.get("pretrained_model_path", None):
vq_model = vq_model().to(accelerator.device)
state_dict = torch.load(config.model.vq_model.pretrained_model_path)['model']
vq_model.load_state_dict(state_dict)
else:
vq_model = vq_model.from_pretrained(config.model.vq_model.vq_model_name).to(accelerator.device)
vq_model.eval()
vq_model.requires_grad_(False)
model = MMadaModelLM.from_pretrained(config.model.mmada.pretrained_model_path, torch_dtype=torch.bfloat16).to(accelerator.device)
mask_id = model.config.mask_token_id
##################################
# Optimizer and LR scheduler #
#################################
optimizer_config = config.optimizer.params
# no decay on bias and layernorm and embedding
no_decay = ["bias", "layer_norm.weight", "mlm_ln.weight", "embeddings.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if
p.requires_grad and not any(nd in n for nd in no_decay)],
"weight_decay": optimizer_config.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if
p.requires_grad and any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer_type = config.optimizer.name
if optimizer_type == "adamw":
optimizer = AdamW(
optimizer_grouped_parameters,
lr=optimizer_config.learning_rate,
betas=(optimizer_config.beta1, optimizer_config.beta2),
weight_decay=optimizer_config.weight_decay,
eps=optimizer_config.epsilon,
)
else:
raise ValueError(f"Optimizer {optimizer_type} not supported")
# Create mask scheduler
if config.get("mask_schedule", None) is not None:
schedule = config.mask_schedule.schedule
args = config.mask_schedule.get("params", {})
mask_schedule = get_mask_schedule(schedule, **args)
else:
mask_schedule = get_mask_schedule(config.training.get("mask_schedule", "cosine"))
lr_scheduler = get_scheduler(
config.lr_scheduler.scheduler,
optimizer=optimizer,
num_training_steps=config.training.max_train_steps,
num_warmup_steps=config.lr_scheduler.params.warmup_steps,
min_lr_scale=config.lr_scheduler.params.min_lr_scale
)
##################################
# DATALOADER #
#################################
logger.info("Creating dataloaders and lr_scheduler")
total_batch_size_t2i_without_accum = config.training.batch_size_t2i * accelerator.num_processes
total_batch_size_t2i = (
config.training.batch_size_t2i * accelerator.num_processes * config.training.gradient_accumulation_steps
)
# DataLoaders creation:
# We use webdataset for data loading. The dataloaders are created with sampling with replacement.
# We don't do dataset resuming here, instead we resample the shards and buffer each time. The sampling is stochastic.
# This means that the dataloading is not deterministic, but it's fast and efficient.
preproc_config = config.dataset.preprocessing
dataset_config = config.dataset.params
# Data for generation
if config.dataset.gen_type == "t2i":
dataset = Text2ImageDataset(
train_shards_path_or_url=dataset_config.train_t2i_shards_path_or_url,
tokenizer=uni_prompting.text_tokenizer, # we want to get raw texts, tokenizer is just for length counting
max_seq_length=preproc_config.max_seq_length,
num_train_examples=config.experiment.max_train_examples_t2i,
per_gpu_batch_size=config.training.batch_size_t2i,
global_batch_size=total_batch_size_t2i_without_accum,
num_workers=dataset_config.num_workers,
resolution=preproc_config.resolution,
shuffle_buffer_size=dataset_config.shuffle_buffer_size,
pin_memory=dataset_config.pin_memory,
persistent_workers=dataset_config.persistent_workers,
external_caption_path=dataset_config.external_caption_path,
external_journeydb_caption_path=dataset_config.external_journeydb_caption_path,
external_laion12m_caption_path=dataset_config.external_laion12m_caption_path,
external_cc12m_caption_path=dataset_config.external_cc12m_caption_path,
external_text_to_image_2M_512_caption_path=dataset_config.external_text_to_image_2M_512_caption_path,
)
train_dataloader_t2i = dataset.train_dataloader
num_update_steps_per_epoch = math.ceil(
train_dataloader_t2i.num_batches / config.training.gradient_accumulation_steps)
num_train_epochs = math.ceil(config.training.max_train_steps / num_update_steps_per_epoch)
elif config.dataset.gen_type == "t2i_parquet":
# this part relies on the internal packages, which will not be released
num_update_steps_per_epoch = math.ceil(config.experiment.max_train_examples_t2i / total_batch_size_t2i)
num_train_epochs = math.ceil(config.training.max_train_steps / num_update_steps_per_epoch)
train_dataloader_t2i = create_imagetext_dataloader(
train_shards_path_or_url=dataset_config.train_t2i_shards_path_or_url,
batch_size=config.training.batch_size_t2i,
image_size=preproc_config.resolution,
num_workers=dataset_config.num_workers,
num_readers=32,
predefined_steps=num_update_steps_per_epoch,
drop_last=True,
shuffle=True,
shuffle_buffer_size=dataset_config.shuffle_buffer_size
)
elif config.dataset.gen_type == "imagenet1k":
dataset_imagenet = ImageNetDataset(
dataset_config.train_t2i_shards_path_or_url,
image_size=preproc_config.resolution,
)
print('process index : ',
accelerator.process_index, ', ', accelerator.num_processes,
"Length: ", len(dataset_imagenet))
if accelerator.num_processes > 1:
sampler = DistributedSampler(dataset_imagenet,
num_replicas=accelerator.num_processes,
rank=accelerator.process_index,
shuffle=True,
)
shuffle = False
else:
sampler = None
shuffle = True
train_dataloader_t2i = DataLoader(dataset_imagenet, batch_size=config.training.batch_size_t2i,
sampler=sampler, collate_fn=dataset_imagenet.collate_fn,
shuffle=shuffle, num_workers=dataset_config.num_workers)
num_update_steps_per_epoch = math.ceil(len(dataset_imagenet) / total_batch_size_t2i)
num_train_epochs = math.ceil(config.training.max_train_steps / num_update_steps_per_epoch)
else:
raise ValueError(f"Unsupported dataset type {config.dataset.type}")
total_batch_size_mmu_without_accum = config.training.batch_size_mmu * accelerator.num_processes
# Data for image captioning
if config.dataset.und_type == "captioning":
dataset_mmu = Text2ImageDataset(
train_shards_path_or_url=dataset_config.train_mmu_shards_path_or_url,
tokenizer=uni_prompting.text_tokenizer, # we want to get raw texts
max_seq_length=preproc_config.max_seq_length,
num_train_examples=config.experiment.max_train_examples_mmu,
per_gpu_batch_size=config.training.batch_size_mmu,
global_batch_size=total_batch_size_mmu_without_accum,
num_workers=dataset_config.num_workers,
resolution=preproc_config.resolution,
shuffle_buffer_size=dataset_config.shuffle_buffer_size,
pin_memory=dataset_config.pin_memory,
persistent_workers=dataset_config.persistent_workers,
external_caption_path=dataset_config.external_caption_path,
external_journeydb_caption_path=dataset_config.external_journeydb_caption_path,
external_laion12m_caption_path=dataset_config.external_laion12m_caption_path,
external_cc12m_caption_path=dataset_config.external_cc12m_caption_path,
external_text_to_image_2M_512_caption_path=dataset_config.external_text_to_image_2M_512_caption_path,
external_ai2d_caption_path=dataset_config.external_ai2d_caption_path,
external_clevr_caption_path=dataset_config.external_clevr_caption_path,
external_docvqa_caption_path=dataset_config.external_docvqa_caption_path,
external_geo_caption_path=dataset_config.external_geo_caption_path,
is_captioning=True,
add_caption_prompt=dataset_config.add_caption_prompt,
)
train_dataloader_mmu = dataset_mmu.train_dataloader
elif config.dataset.und_type == "captioning_parquet":
train_dataloader_mmu = create_imagetext_dataloader(
train_shards_path_or_url=dataset_config.train_mmu_shards_path_or_url,
batch_size=config.training.batch_size_mmu,
image_size=preproc_config.resolution,
num_workers=dataset_config.num_workers,
num_readers=32,
predefined_steps=num_update_steps_per_epoch,
drop_last=True,
shuffle=True,
shuffle_buffer_size=dataset_config.shuffle_buffer_size,
is_captioning=True
)
else:
raise NotImplementedError(f"Unsupported dataset type {config.dataset.und_type}")
dataset_lm = ChatDataset(data_path=dataset_config.train_lm_shards_path_or_url,
rank=accelerator.process_index,
world_size=accelerator.num_processes,
num_workers=dataset_config.num_workers,
max_length=preproc_config.max_lm_text_length,
tokenizer=uni_prompting.text_tokenizer,
)
train_dataloader_lm = torch.utils.data.DataLoader(dataset_lm, batch_size=config.training.batch_size_lm,
sampler=None, collate_fn=dataset_lm.collate_fn,
num_workers=dataset_config.num_workers)
# Combine these dataloaders into a single iterable model
iterables = {
"t2i_flow": train_dataloader_t2i,
"lm_flow": train_dataloader_lm,
"mmu_flow": train_dataloader_mmu,
}
#
combined_dataloader = CombinedLoader(iterables, mode=config.dataset.combined_loader_mode)
##################################
# MODEL RESUME #
#################################
global_step = 0
first_epoch = 0
start_step = 0
if config.experiment.resume_from_checkpoint:
dirs = os.listdir(config.experiment.output_dir)
logger.info(f"dirs: {dirs}")
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
path = dirs[-1] if len(dirs) > 0 else None
logger.info(f"path: {path}")
if path is not None:
path = os.path.join(config.experiment.output_dir, path)
logger.info(f"Resuming from checkpoint: {path}")
global_step = start_step = int(os.path.basename(path).split("-")[1])
first_epoch = global_step // num_update_steps_per_epoch
if os.path.exists(f'{path}/unwrapped_model/pytorch_model.bin'):
state_dict = torch.load(f'{path}/unwrapped_model/pytorch_model.bin', map_location="cpu")
model.load_state_dict(state_dict, strict=True)
del state_dict
elif os.path.exists(f'{path}/unwrapped_model/pytorch_model.bin.index.json'):
from safetensors.torch import load_file
from transformers.modeling_utils import load_sharded_checkpoint
load_sharded_checkpoint(model, f'{path}/unwrapped_model/')
elif os.path.exists(f'{path}/unwrapped_model/model.safetensors.index.json'):
from transformers.modeling_utils import load_sharded_checkpoint
load_sharded_checkpoint(
model,
f'{path}/unwrapped_model/',
)
else:
raise FileNotFoundError(f"Checkpoint {path}/unwrapped_model/pytorch_model.bin not found")
else:
logger.info("Not resuming from checkpoint")
##################################
# Prepare accelerator #
#################################
logger.info("Preparing model, optimizer and dataloaders")
model, optimizer, lr_scheduler = accelerator.prepare(model, optimizer, lr_scheduler)
vq_model.to(device=accelerator.device)
mask_dtype = model.get_input_embeddings().weight.dtype
##################################
# Training #
#################################
logger.info("***** Running training *****")
logger.info(f" Num training steps = {config.training.max_train_steps}")
logger.info(f" Instantaneous batch size per device = {total_batch_size_per_gpu}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {config.training.gradient_accumulation_steps}")
@torch.no_grad()
def prepare_inputs_and_labels(
pixel_values_or_image_ids: Union[torch.FloatTensor, torch.LongTensor],
texts: Union[str, list[str]],
min_masking_rate: float = 0.0,
is_train: bool = True,
seed: int = None
):
image_tokens = vq_model.get_code(pixel_values_or_image_ids)
image_tokens = image_tokens + len(uni_prompting.text_tokenizer)
# create MLM mask and labels
input_ids, labels, loss_weight, mask_prob = mask_or_random_replace_tokens(
image_tokens,
mask_id,
config,
mask_schedule=mask_schedule,
is_train=is_train,
seed=seed
)
input_ids, masks, labels = uni_prompting((texts, input_ids, labels), 't2i')
return input_ids, labels, mask_prob, image_tokens, masks
@torch.no_grad()
def prepare_inputs_and_labels_for_text(
texts: Union[str, list[str]], max_seq_len, eps=1e-3
):
# create MLM mask and labels
input_ids_lm, prompt_mask, labels_lm = uni_prompting((texts, max_seq_len), 'lm')
b, l = input_ids_lm.shape
t = torch.rand(b, device=input_ids_lm.device)
p_mask = (1 - eps) * t + eps
p_mask = p_mask[:, None].repeat(1, l)
masked_indices = torch.rand((b, l), device=input_ids_lm.device) < p_mask
# 126336 is used for [MASK] token
noisy_batch = torch.where(masked_indices, mask_id, input_ids_lm)
masked_indices = noisy_batch == mask_id
return noisy_batch, labels_lm, p_mask
@torch.no_grad()
def prepare_inputs_and_labels_for_chat_text(
texts: Union[str, list[str]], max_seq_len, eps=1e-3
):
# create MLM mask and labels
input_ids_lm, prompt_mask, labels_lm = uni_prompting((texts, max_seq_len), 'lm_chat')
b, l = input_ids_lm.shape
t = torch.rand(b, device=input_ids_lm.device)
p_mask = (1 - eps) * t + eps
p_mask = p_mask[:, None].repeat(1, l)
masked_indices = torch.rand((b, l), device=input_ids_lm.device) < p_mask
# 126336 is used for [MASK] token
noisy_batch = torch.where(masked_indices, mask_id, input_ids_lm)
masked_indices = noisy_batch == mask_id
noisy_batch[prompt_mask.bool()] = input_ids_lm[prompt_mask.bool()]
masked_indices = noisy_batch == mask_id
answer_lengths_lm = torch.sum((1 - prompt_mask), dim=-1, keepdim=True)
answer_lengths_lm = answer_lengths_lm.repeat(1, noisy_batch.shape[1])
return noisy_batch, labels_lm, p_mask, answer_lengths_lm
@torch.no_grad()
def prepare_inputs_and_labels_for_mmu(
input_ids_mmu, prompt_masks, labels_mmu, eps=1e-3
):
b, l = input_ids_mmu.shape
t = torch.rand(b, device=input_ids_mmu.device)
p_mask = (1 - eps) * t + eps
p_mask = p_mask[:, None].repeat(1, l)
masked_indices = torch.rand((b, l), device=input_ids_mmu.device) < p_mask
# 126336 is used for [MASK] token
noisy_batch = torch.where(masked_indices, mask_id, input_ids_mmu)
masked_indices = noisy_batch == mask_id
noisy_batch[prompt_masks.bool()] = input_ids_mmu[prompt_masks.bool()]
masked_indices = noisy_batch == mask_id
prompt_masks = prompt_masks.to(torch.int64)
answer_lengths = torch.sum((1 - prompt_masks), dim=-1, keepdim=True)
answer_lengths = answer_lengths.repeat(1, noisy_batch.shape[1])
return noisy_batch, labels_mmu, p_mask, answer_lengths
batch_time_m = AverageMeter()
data_time_m = AverageMeter()
end = time.time()
for epoch in range(first_epoch, num_train_epochs):
model.train()
for batch, batch_idx, dataloader_idx in combined_dataloader:
# for loss calculation
batch_size_t2i = batch["t2i_flow"]["images"].shape[0]
batch_size_lm = len(batch["lm_flow"]["input_ids"])
batch_size_mmu = batch["mmu_flow"]["images"].shape[0]
# *-------*-------*-------*-------*-------*-------*-------*-------*-------*-------*-------*
# Build formatted sequences for class-conditional/text-to-image generation
# *-------*-------*-------*-------*-------*-------*-------*-------*-------*-------*-------*
pixel_values, texts = batch["t2i_flow"]["images"], batch["t2i_flow"]["input_ids"]
pixel_values = pixel_values.to(accelerator.device, non_blocking=True)
data_time_m.update(time.time() - end)
# print(f"t2i texts: {texts}")
# Encode images to image tokens, mask them and create input and labels
(
input_ids,
labels,
mask_prob,
image_tokens_ori,
t2i_masks
) = prepare_inputs_and_labels(pixel_values, texts, config.training.min_masking_rate)
# *-------*-------*-------*-------*-------*-------*-------*-------*-------*-------*-------*
# Build formatted sequences for language modeling
# *-------*-------*-------*-------*-------*-------*-------*-------*-------*-------*-------*
max_seq_len = input_ids.shape[-1]
texts_lm = batch["lm_flow"]["input_ids"]
(
input_ids_lm,
labels_lm,
p_mask_lm,
answer_lengths_lm
) = prepare_inputs_and_labels_for_chat_text(texts_lm, max_seq_len)
input_ids = torch.cat((input_ids, input_ids_lm.to(input_ids.device)), dim=0)
labels = torch.cat((labels, labels_lm.to(input_ids.device)), dim=0)
# *-------*-------*-------*-------*-------*-------*-------*-------*-------*-------*-------*
# Build formatted sequences for captioning/multimodal understanding
# *-------*-------*-------*-------*-------*-------*-------*-------*-------*-------*-------*
if "llava" in config.dataset.und_type:
pixel_values_mmu, input_ids_mmu, labels_mmu = (batch["mmu_flow"]["images"], batch["mmu_flow"]["input_ids"],batch["mmu_flow"]["labels"])
pixel_values_mmu = pixel_values_mmu.to(accelerator.device, non_blocking=True)
input_ids_mmu = input_ids_mmu.to(accelerator.device, non_blocking=True)
image_tokens_mmu = vq_model.get_code(pixel_values_mmu)
image_tokens_mmu = image_tokens_mmu + len(uni_prompting.text_tokenizer)
input_ids_mmu = torch.cat([
(torch.ones(input_ids_mmu.shape[0], 1) * uni_prompting.sptids_dict['<|mmu|>']).to(
accelerator.device),
(torch.ones(input_ids_mmu.shape[0], 1) * uni_prompting.sptids_dict['<|soi|>']).to(
accelerator.device),
image_tokens_mmu,
(torch.ones(input_ids_mmu.shape[0], 1) * uni_prompting.sptids_dict['<|eoi|>']).to(
accelerator.device),
input_ids_mmu,
], dim=1).long()
labels_mmu = torch.cat([
(torch.ones(input_ids_mmu.shape[0], 1) * uni_prompting.ignore_id).to(accelerator.device),
(torch.ones(input_ids_mmu.shape[0], 1) * uni_prompting.ignore_id).to(accelerator.device),
torch.ones_like(image_tokens_mmu) * uni_prompting.ignore_id,
(torch.ones(input_ids_mmu.shape[0], 1) * uni_prompting.ignore_id).to(accelerator.device),
labels_mmu.to(accelerator.device)
], dim=1).long()
else:
pixel_values_mmu, texts_mmu = batch["mmu_flow"]["images"], batch["mmu_flow"]["input_ids"]
pixel_values_mmu = pixel_values_mmu.to(accelerator.device, non_blocking=True)
image_tokens_mmu = vq_model.get_code(pixel_values_mmu)
image_tokens_mmu = image_tokens_mmu + len(uni_prompting.text_tokenizer)
input_ids_mmu, prompt_masks, labels_mmu = uni_prompting((image_tokens_mmu, texts_mmu), 'mmu')
(
input_ids_mmu,
labels_mmu,
p_mask_mmu,
answer_lengths
) = prepare_inputs_and_labels_for_mmu(input_ids_mmu, prompt_masks, labels_mmu)
input_ids_mmu = input_ids_mmu.to(accelerator.device, non_blocking=True)
input_ids = torch.cat((input_ids, input_ids_mmu.to(input_ids.device)), dim=0)
labels = torch.cat((labels, labels_mmu.to(input_ids.device)), dim=0)
if global_step == 0 and epoch == 0:
logger.info("Input ids: {}".format(input_ids))
logger.info("Labels: {}".format(labels))
with accelerator.accumulate(model):
logits, loss_t2i, loss_lm, loss_mmu = model.forward_process(
input_ids=input_ids,
labels=labels,
batch_size_t2i=batch_size_t2i,
batch_size_lm=batch_size_lm,
batch_size_mmu=batch_size_mmu,
max_seq_length=config.dataset.preprocessing.max_seq_length,
p_mask_lm=p_mask_lm,
p_mask_mmu=p_mask_mmu,
answer_lengths=answer_lengths,
t2i_masks=t2i_masks,
answer_lengths_lm=answer_lengths_lm
)
# Gather the losses across all processes for logging (if we use distributed training).
avg_loss_t2i = accelerator.gather(loss_t2i.repeat(config.training.batch_size_t2i)).mean()
avg_loss_lm = accelerator.gather(loss_lm.repeat(config.training.batch_size_lm)).mean()
avg_loss_mmu = accelerator.gather(loss_mmu.repeat(config.training.batch_size_mmu)).mean()
loss = config.training.t2i_coeff * loss_t2i + \
config.training.lm_coeff * loss_lm + \
config.training.mmu_coeff * loss_mmu
avg_masking_rate = accelerator.gather(mask_prob.repeat(config.training.batch_size_t2i)).mean()
accelerator.backward(loss)
if config.training.max_grad_norm is not None and accelerator.sync_gradients:
accelerator.clip_grad_norm_(model.parameters(), config.training.max_grad_norm)
optimizer.step()
lr_scheduler.step()
# log gradient norm before zeroing it
if (
accelerator.sync_gradients
and (global_step + 1) % config.experiment.log_grad_norm_every == 0
and accelerator.is_main_process
):
log_grad_norm(model, accelerator, global_step + 1)
optimizer.zero_grad(set_to_none=True)
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
batch_time_m.update(time.time() - end)
end = time.time()
# Log metrics
if (global_step + 1) % config.experiment.log_every == 0:
samples_per_second_per_gpu = (
config.training.gradient_accumulation_steps * total_batch_size_per_gpu / batch_time_m.val
)
logs = {
"step_loss_t2i": avg_loss_t2i.item(),
"step_loss_mmu": avg_loss_mmu.item(),
"step_loss_lm": avg_loss_lm.item(),
"lr": lr_scheduler.get_last_lr()[0],
"avg_masking_rate": avg_masking_rate.item(),
"samples/sec/gpu": samples_per_second_per_gpu,
"data_time": data_time_m.val,
"batch_time": batch_time_m.val,
}
accelerator.log(logs, step=global_step + 1)
logger.info(
f"Step: {global_step + 1} "
f"Loss_t2i: {avg_loss_t2i.item():0.4f} "
f"Loss_mmu: {avg_loss_mmu.item():0.4f} "
f"Loss_lm: {avg_loss_lm.item():0.4f} "
f"Data (t): {data_time_m.val:0.4f}, {samples_per_second_per_gpu:0.2f}/s/gpu "
f"Batch (t): {batch_time_m.val:0.4f} "
f"LR: {lr_scheduler.get_last_lr()[0]:0.6f}"
)
# resetting batch / data time meters per log window
batch_time_m.reset()
data_time_m.reset()
if (global_step + 1) % config.experiment.save_every == 0:
save_checkpoint(model, config, accelerator, global_step + 1, uni_prompting)
if ((global_step + 1) % config.experiment.generate_every == 0 or global_step == start_step) and accelerator.is_main_process:
quantative_images(
model,
vq_model,
uni_prompting,
accelerator,
config,
global_step + 1,
mask_schedule=mask_schedule,
force_no_cfg=False
)
generate_images(
model,
vq_model,
uni_prompting,
accelerator,
config,
global_step + 1,
mask_schedule=mask_schedule,
force_no_cfg=False
)
visualize_predictions(
model,
vq_model,
uni_prompting,
config,
global_step + 1,
input_ids,
image_tokens_ori,
batch["t2i_flow"]["images"],
texts,
logits,
accelerator
)
understanding_images(
model,
vq_model,
uni_prompting,
accelerator,
config,
global_step + 1,
)
generate_chat_text(
model,
uni_prompting,
accelerator,
config,
global_step + 1,
)
global_step += 1
# Stop training if max steps is reached
if global_step >= config.training.max_train_steps:
break
# End for
accelerator.wait_for_everyone()
# Evaluate and save checkpoint at the end of training
save_checkpoint(model, config, accelerator, global_step, uni_prompting)
# Save the final trained checkpoint
if accelerator.is_main_process:
model = accelerator.unwrap_model(model)
model.save_pretrained(config.experiment.output_dir, safe_serialization=True)
accelerator.end_training()
@torch.no_grad()
def visualize_predictions(
model,
vq_model,
uni_prompting,
config,
global_step,
input_ids,
image_tokens_ori,
ori_images,
texts,
logits,
accelerator
):
logger.info("Visualizing predictions...")
model.eval()
recons_images = vq_model.decode_code(image_tokens_ori - len(uni_prompting.text_tokenizer))
recons_images = torch.clamp((recons_images + 1.0) / 2.0, min=0.0, max=1.0)
recons_images *= 255.0
recons_images = recons_images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8)
images = torch.clamp((ori_images + 1.0) / 2.0, min=0.0, max=1.0)
images *= 255.0
images = images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8)
predictions = logits[:config.training.batch_size_t2i, -(config.model.mmada.num_vq_tokens + 1):-1:, len(uni_prompting.text_tokenizer) + config.model.mmada.num_new_special_tokens: len(uni_prompting.text_tokenizer) + config.model.mmada.num_new_special_tokens + config.model.mmada.codebook_size]
predictions = predictions.argmax(axis=-1)
mask_token_id = accelerator.unwrap_model(model).config.mask_token_id - len(uni_prompting.text_tokenizer)
input_ids = input_ids[:config.training.batch_size_t2i, -(config.model.mmada.num_vq_tokens + 1):-1:] - len(uni_prompting.text_tokenizer)
mask_ratio = list((torch.where(input_ids == mask_token_id, 1, 0).sum(
dim=-1) / config.model.mmada.num_vq_tokens).cpu().numpy())
predicted_images = torch.where(input_ids == mask_token_id, predictions, input_ids)
predicted_images = vq_model.decode_code(predicted_images)
predicted_images = torch.clamp((predicted_images + 1.0) / 2.0, min=0.0, max=1.0)
predicted_images *= 255.0
predicted_images = predicted_images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8)
predicted_images = np.concatenate((images, recons_images, predicted_images), 2)
pil_images = [Image.fromarray(image) for image in predicted_images]
# Log images
wandb_images = [wandb.Image(image, caption=f'mask ratio: {r:0.2f} \n caption: {texts[i]}') for i, (image, r) in
enumerate(zip(pil_images, mask_ratio))]
wandb.log({"Original images v.s. Reconstructed images v.s. Predicted images": wandb_images}, step=global_step)
model.train()
@torch.no_grad()
def generate_images(
model,
vq_model,
uni_prompting,
accelerator,
config,
global_step,
mask_schedule,
force_no_cfg = False
):
logger.info("Generating images...")
model.eval()
# read validation prompts from file
with open(config.dataset.params.validation_prompts_file, "r") as f:
validation_prompts = f.read().splitlines()
mask_dtype = model.get_input_embeddings().weight.dtype
mask_token_id = accelerator.unwrap_model(model).config.mask_token_id
image_tokens = torch.ones((len(validation_prompts), config.model.mmada.num_vq_tokens), dtype=torch.long,
device=accelerator.device) * mask_token_id
input_ids, attention_mask = uni_prompting((validation_prompts, image_tokens), 't2i_gen')
if not force_no_cfg and config.training.guidance_scale > 0:
uncond_input_ids, uncond_attention_mask = uni_prompting(([''] * len(validation_prompts), image_tokens), 't2i_gen')
cfg_scale = config.training.guidance_scale
else:
uncond_input_ids = None
uncond_attention_mask = None
cfg_scale = 0
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
else:
weight_dtype = torch.float32
with torch.autocast("cuda", dtype=weight_dtype, enabled=accelerator.mixed_precision != "no"):
# Generate images
gen_token_ids = accelerator.unwrap_model(model).t2i_generate(
input_ids=input_ids,
uncond_input_ids=uncond_input_ids,
attention_mask=attention_mask,
uncond_attention_mask=uncond_attention_mask,
guidance_scale=cfg_scale,
temperature=config.training.get("generation_temperature", 1.0),
timesteps=config.training.generation_timesteps,
noise_schedule=mask_schedule,
noise_type=config.training.get("noise_type", "mask"),
predict_all_tokens=config.training.get("predict_all_tokens", False),
seq_len=config.model.mmada.num_vq_tokens,
uni_prompting=uni_prompting,
config=config,
)
# In the beginning of training, the model is not fully trained and the generated token ids can be out of range
# so we clamp them to the correct range.
gen_token_ids = torch.clamp(gen_token_ids, max=accelerator.unwrap_model(model).config.codebook_size - 1, min=0)
images = vq_model.decode_code(gen_token_ids)
model.train()
if config.training.get("pre_encode", False):
del vq_model
# Convert to PIL images
images = torch.clamp((images + 1.0) / 2.0, min=0.0, max=1.0)
images *= 255.0
images = images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8)
pil_images = [Image.fromarray(image) for image in images]
# Log images
wandb_images = [wandb.Image(image, caption=validation_prompts[i]) for i, image in enumerate(pil_images)]
wandb.log({f"Generated images with cfg {cfg_scale}": wandb_images}, step=global_step)
@torch.no_grad()
def quantative_images(
model,
vq_model,
uni_prompting,
accelerator,
config,
global_step,
mask_schedule,
force_no_cfg = False
):
logger.info("Quantative images...")
model.eval()
clip_score_fn = partial(clip_score, model_name_or_path="/data_storage/shared/pretrained_models/")
image_reward_model = RM.load("/data_storage/shared/pretrained_models/ImageReward/ImageReward.pt")
# read validation prompts from file
with open(config.validation.quantative_prompts_file, "r") as f:
validation_prompts = f.read().splitlines()
mask_dtype = model.get_input_embeddings().weight.dtype
mask_token_id = accelerator.unwrap_model(model).config.mask_token_id
image_tokens = torch.ones((len(validation_prompts), config.model.mmada.num_vq_tokens), dtype=torch.long,
device=accelerator.device) * mask_token_id
input_ids, attention_mask = uni_prompting((validation_prompts, image_tokens), 't2i_gen')
if not force_no_cfg and config.training.guidance_scale > 0:
uncond_input_ids, uncond_attention_mask = uni_prompting(([''] * len(validation_prompts), image_tokens), 't2i_gen')
cfg_scale = config.training.guidance_scale
else:
uncond_input_ids = None
uncond_attention_mask = None
cfg_scale = 0
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
else:
weight_dtype = torch.float32
validation_batch_size = config.validation.quantative_batch_size
pil_images = []
clip_scores = []
image_rewards = []
for i in range(0, len(validation_prompts), validation_batch_size):
batch_input_ids = input_ids[i:i+validation_batch_size]
batch_attention_mask = attention_mask[i:i+validation_batch_size]
batch_uncond_input_ids = uncond_input_ids[i:i+validation_batch_size]
batch_uncond_attention_mask = uncond_attention_mask[i:i+validation_batch_size]
with torch.autocast("cuda", dtype=weight_dtype, enabled=accelerator.mixed_precision != "no"):
# Generate images
gen_token_ids = accelerator.unwrap_model(model).t2i_generate(
input_ids=batch_input_ids,
uncond_input_ids=batch_uncond_input_ids,
attention_mask=batch_attention_mask,
uncond_attention_mask=batch_uncond_attention_mask,
guidance_scale=cfg_scale,
temperature=config.training.get("generation_temperature", 1.0),
timesteps=config.training.generation_timesteps,
noise_schedule=mask_schedule,
noise_type=config.training.get("noise_type", "mask"),
predict_all_tokens=config.training.get("predict_all_tokens", False),
seq_len=config.model.mmada.num_vq_tokens,
uni_prompting=uni_prompting,
config=config,
)
# In the beginning of training, the model is not fully trained and the generated token ids can be out of range
# so we clamp them to the correct range.
gen_token_ids = torch.clamp(gen_token_ids, max=accelerator.unwrap_model(model).config.codebook_size - 1, min=0)
images = vq_model.decode_code(gen_token_ids)
images = torch.clamp((images + 1.0) / 2.0, min=0.0, max=1.0)
images *= 255.0
image_tensor = images.to(torch.uint8)
images = images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8)
batch_pil_images = [Image.fromarray(image) for image in images]
pil_images.extend(batch_pil_images)
# calculate CLIP score
batch_clip_score = clip_score_fn(image_tensor, validation_prompts[i:i+validation_batch_size])
# calculate image reward score
for j in range(validation_batch_size):
clip_scores.append(clip_score_fn(image_tensor[j], validation_prompts[i+j]))
image_reward_score = image_reward_model.score(validation_prompts[i+j], batch_pil_images[j])
image_rewards.append(image_reward_score)
clip_scores = torch.tensor(clip_scores)
image_rewards = torch.tensor(image_rewards)
logger.info(f"clip_scores: {clip_scores}, image_rewards: {image_rewards}")
clip_scores_mean = clip_scores.mean()
image_rewards_mean = image_rewards.mean()
logger.info(f"CLIP score mean: {clip_scores_mean}, Image reward score mean: {image_rewards_mean}")
accelerator.log({"clip_score": clip_scores_mean, "image_reward_score": image_rewards_mean}, step=global_step)
wandb_images = [wandb.Image(image, caption=f"{validation_prompts[i]} \n CLIP score: {clip_scores[i]}, Image reward score: {image_rewards[i]}") for i, image in enumerate(pil_images[:validation_batch_size])]
wandb.log({f"Quantative images with cfg {cfg_scale}": wandb_images}, step=global_step)
if config.training.get("pre_encode", False):
del vq_model
model.train()
@torch.no_grad()
def understanding_images(
model,
vq_model,
uni_prompting,
accelerator,
config,
global_step,
):
logger.info("Understanding images...")
model.eval()
prompts_file_path = config.dataset.params.mmu_validation_prompts_file
prompts_dict = {}
try:
with open(prompts_file_path, 'r') as f:
for line in f:
data = json.loads(line)
prompts_dict[data['file_name']] = data['prompt']
except Exception as e:
logger.error(f"Error loading prompts from {prompts_file_path}: {e}. Using default prompt.")
default_prompt = '<|start_header_id|>user<|end_header_id|>\n' + "Please describe this image in detail." + '<eot_id><|start_header_id|>assistant<|end_header_id|>\n'
file_list = os.listdir(config.dataset.params.mmu_image_root)
file_list = [f for f in file_list if f.lower().endswith(('.jpg', '.png', '.jpeg'))]
file_list = sorted(file_list)
responses = ['' for i in range(len(file_list))]
questions = ['' for i in range(len(file_list))]
images = []
device = accelerator.device
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
else:
weight_dtype = torch.float32
for i, file_name in enumerate(file_list):
image_path = os.path.join(config.dataset.params.mmu_image_root, file_name)
image_ori = Image.open(image_path).convert("RGB")
if 'ai2d' in file_name or 'clevr' in file_name or 'docvqa' in file_name or 'geo' in file_name:
image = image_transform_squash(image_ori, resolution=config.dataset.params.resolution).to(device)
else:
image = image_transform(image_ori, resolution=config.dataset.params.resolution).to(device)
image = image.unsqueeze(0)
images.append(image)
image_tokens = vq_model.get_code(image) + len(uni_prompting.text_tokenizer)
batch_size = 1
current_prompt = prompts_dict.get(file_name)
if current_prompt is None:
logger.warning(f"Prompt for {file_name} not found in {prompts_file_path}. Using default prompt.")
default_prompt_for_missing = '<|start_header_id|>user<|end_header_id|>\n' + "Please describe this image in detail." + '<eot_id><|start_header_id|>assistant<|end_header_id|>\n'
current_prompt = default_prompt_for_missing if prompts_dict else default_prompt # 如果 prompts_dict ä¸ºç©ºï¼ˆåŠ è½½å¤±è´¥ï¼‰ï¼Œåˆ™ä½¿ç”¨åŠ è½½å¤±è´¥æ—¶çš„é»˜è®¤å€¼
input_ids = uni_prompting.text_tokenizer([current_prompt])['input_ids']
input_ids = torch.tensor(input_ids).to(device)
input_ids = torch.cat([
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|mmu|>']).to(device),
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|soi|>']).to(device),
image_tokens,
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|eoi|>']).to(device),
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|sot|>']).to(device),
input_ids
], dim=1).long()
with torch.autocast("cuda", dtype=weight_dtype, enabled=accelerator.mixed_precision != "no"):
output_ids = accelerator.unwrap_model(model).mmu_generate(input_ids, max_new_tokens=config.dataset.preprocessing.max_seq_length, steps=config.dataset.preprocessing.max_seq_length // 2, block_length=config.dataset.preprocessing.max_seq_length // 4)
text = uni_prompting.text_tokenizer.batch_decode(output_ids[:, input_ids.shape[1]:], skip_special_tokens=True)
current_prompt = current_prompt.removeprefix("<|start_header_id|>user<|end_header_id|>\n").removesuffix("<eot_id><|start_header_id|>assistant<|end_header_id|>\n")
questions[i] += current_prompt
responses[i] += text[0]
model.train()
images = torch.cat(images, dim=0)
images = torch.clamp((images + 1.0) / 2.0, min=0.0, max=1.0)
images *= 255.0
images = images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8)
pil_images = [Image.fromarray(image) for image in images]
# Log images
wandb_images = [
wandb.Image(
image,
caption=f"**Question:** {questions[i]}\n**Response:** {responses[i]}"
)
for i, image in enumerate(pil_images)
]
wandb.log({"Understanding images": wandb_images}, step=global_step)
@torch.no_grad()
def generate_chat_text(
model,
uni_prompting,
accelerator,
config,
global_step,
):
logger.info("Generating chat text...")
model.eval()
df = pandas.read_json(config.dataset.params.lm_chat_validation_jsonl, lines=True)
prompts = df['question'].tolist()
responses = [''] * len(prompts)
device = accelerator.device
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
else:
weight_dtype = torch.float32
html_content = "<div style='font-family:Arial, sans-serif;'>"
html_content += f"<h2 style='color:navy;'>Step {global_step}</h2>"
for i, prompt in enumerate(prompts):
original_prompt = prompt
prompt_with_tags = "<|start_header_id|>user<|end_header_id|>\n" + f"{prompt}" + "<eot_id><|start_header_id|>assistant<|end_header_id|>\n"
token_ids = uni_prompting.text_tokenizer([prompt_with_tags])['input_ids'][0]
token_ids = [uni_prompting.text_tokenizer.bos_token_id] + token_ids
input_ids = torch.tensor(token_ids).unsqueeze(0).to(device)
with torch.autocast("cuda", dtype=weight_dtype, enabled=accelerator.mixed_precision != "no"):
output_ids = accelerator.unwrap_model(model).mmu_generate(
input_ids,
max_new_tokens=config.dataset.preprocessing.max_seq_length,
steps=config.dataset.preprocessing.max_lm_text_length // 2,
block_length=config.dataset.preprocessing.max_seq_length // 4
)
text = uni_prompting.text_tokenizer.batch_decode(output_ids[:, input_ids.shape[1]:], skip_special_tokens=True)
responses[i] += text[0]
escaped_prompt = html.escape(original_prompt)
escaped_response = html.escape(responses[i])
html_content += f"""
<div style='border: 1px solid #ddd; margin:10px 0; padding:10px;'>
<h4 style='margin: 0;'>Prompt</h4>
<p style='margin: 0;'>{escaped_prompt}</p>
<h4 style='margin: 0; margin-top:5px;'>Response</h4>
<p style='margin: 0;'>{escaped_response}</p>
</div>
"""
html_content += "</div>"
model.train()
wandb.log({"chat_text_generation": wandb.Html(html_content)}, step=global_step)
def save_checkpoint(model, config, accelerator, global_step, uni_prompting):
output_dir = config.experiment.output_dir
checkpoints_total_limit = config.experiment.get("checkpoints_total_limit", None)
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
if accelerator.is_main_process and checkpoints_total_limit is not None:
checkpoints = os.listdir(output_dir)
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
if len(checkpoints) >= checkpoints_total_limit:
num_to_remove = len(checkpoints) - checkpoints_total_limit + 1
removing_checkpoints = checkpoints[0:num_to_remove]
logger.info(
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
)
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
for removing_checkpoint in removing_checkpoints:
removing_checkpoint = os.path.join(output_dir, removing_checkpoint)
shutil.rmtree(removing_checkpoint)
save_path = Path(output_dir) / f"checkpoint-{global_step}"
# retrieve the model on all processes for deepspeed stage 3 to work then save on one process (we are not using stage 3 yet)
# XXX: could also make this conditional on deepspeed
state_dict = accelerator.get_state_dict(model)
if accelerator.is_main_process:
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(
save_path / "unwrapped_model",
save_function=accelerator.save,
state_dict=state_dict,
safe_serialization=True
)
json.dump({"global_step": global_step}, (save_path / "metadata.json").open("w+"))
logger.info(f"Saved state to {save_path}")
# save tokenizer
uni_prompting.text_tokenizer.save_pretrained(save_path/ "unwrapped_model")
def log_grad_norm(model, accelerator, global_step):
for name, param in model.named_parameters():
if param.grad is not None:
grads = param.grad.detach().data
grad_norm = (grads.norm(p=2) / grads.numel()).item()
accelerator.log({"grad_norm/" + name: grad_norm}, step=global_step)
if __name__ == "__main__":
main()
|