File size: 3,211 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# Copyright 2023 Google Research. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""PyTorch implementation of the Lion optimizer."""
import torch
from torch.optim.optimizer import Optimizer


class Lion(Optimizer):
    r"""Implements Lion algorithm."""

    def __init__(self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0.0, **kwargs):
        """Initialize the hyperparameters.
        Args:
          params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups
          lr (float, optional): learning rate (default: 1e-4)
          betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its square (default: (0.9, 0.99))
          weight_decay (float, optional): weight decay coefficient (default: 0)
        """

        if not 0.0 <= lr:
            raise ValueError("Invalid learning rate: {}".format(lr))
        if not 0.0 <= betas[0] < 1.0:
            raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
        if not 0.0 <= betas[1] < 1.0:
            raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
        defaults = dict(lr=lr, betas=betas, weight_decay=weight_decay)
        super().__init__(params, defaults)

    @torch.no_grad()
    def step(self, closure=None):
        """Performs a single optimization step.
        Args:
          closure (callable, optional): A closure that reevaluates the model
            and returns the loss.
        Returns:
          the loss.
        """
        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        for group in self.param_groups:
            for p in group["params"]:
                if p.grad is None:
                    continue

                # Perform stepweight decay
                p.data.mul_(1 - group["lr"] * group["weight_decay"])

                grad = p.grad
                state = self.state[p]
                # State initialization
                if len(state) == 0:
                    # Exponential moving average of gradient values
                    state["exp_avg"] = torch.zeros_like(p)

                exp_avg = state["exp_avg"]
                beta1, beta2 = group["betas"]

                # Weight update
                update = exp_avg * beta1 + grad * (1 - beta1)
                p.add_(torch.sign(update), alpha=-group["lr"])
                # Decay the momentum running average coefficient
                exp_avg.mul_(beta2).add_(grad, alpha=1 - beta2)

        return loss