File size: 6,335 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import torch
import numpy as np
import torch.nn.functional as F

from transformers import AutoTokenizer, AutoModel
from models import MMadaModelLM

def add_gumbel_noise(logits, temperature):
    '''
    The Gumbel max is a method for sampling categorical distributions.
    According to arXiv:2409.02908, for MDM, low-precision Gumbel Max improves perplexity score but reduces generation quality.
    Thus, we use float64.
    '''
    if temperature == 0:
        return logits
    logits = logits.to(torch.float64)
    noise = torch.rand_like(logits, dtype=torch.float64)
    gumbel_noise = (- torch.log(noise)) ** temperature
    return logits.exp() / gumbel_noise


def get_num_transfer_tokens(mask_index, steps):
    '''
    In the reverse process, the interval [0, 1] is uniformly discretized into steps intervals.
    Furthermore, because LLaDA employs a linear noise schedule (as defined in Eq. (8)),
    the expected number of tokens transitioned at each step should be consistent.

    This function is designed to precompute the number of tokens that need to be transitioned at each step.
    '''
    mask_num = mask_index.sum(dim=1, keepdim=True)

    base = mask_num // steps
    remainder = mask_num % steps

    num_transfer_tokens = torch.zeros(mask_num.size(0), steps, device=mask_index.device, dtype=torch.int64) + base

    for i in range(mask_num.size(0)):
        num_transfer_tokens[i, :remainder[i]] += 1

    return num_transfer_tokens


@ torch.no_grad()
def generate(model, prompt, steps=128, gen_length=128, block_length=128, temperature=0.,
             cfg_scale=0., remasking='low_confidence', mask_id=126336, attention_mask=None):
    '''
    Args:
        model: Mask predictor.
        prompt: A tensor of shape (B, L), where B is batch size.
        steps: Sampling steps, less than or equal to gen_length.
        gen_length: Generated answer length.
        block_length: Block length, less than or equal to gen_length. If less than gen_length, it means using semi_autoregressive remasking.
        temperature: Categorical distribution sampling temperature.
        cfg_scale: Unsupervised classifier-free guidance scale.
        remasking: Remasking strategy. 'low_confidence' or 'random'.
        mask_id: The toke id of [MASK] is 126336.
    '''
    if attention_mask is not None and 0.0 in attention_mask:
        attention_bias = (attention_mask[:, :, None] & attention_mask[:, None, :]).bool().unsqueeze(1)
        print(f"attention_bias: {attention_bias}")
    else:
        attention_bias = None
    batch_size = prompt.shape[0]
    x = torch.full((batch_size, prompt.shape[1] + gen_length), mask_id, dtype=torch.long).to(model.device)
    x[:, :prompt.shape[1]] = prompt.clone()

    prompt_index = (x != mask_id)

    assert gen_length % block_length == 0
    num_blocks = gen_length // block_length

    assert steps % num_blocks == 0
    steps = steps // num_blocks

    for num_block in range(num_blocks):
        block_mask_index = (x[:, prompt.shape[1] + num_block * block_length: prompt.shape[1] + (num_block + 1) * block_length:] == mask_id)
        num_transfer_tokens = get_num_transfer_tokens(block_mask_index, steps)
        for i in range(steps):
            mask_index = (x == mask_id)
            if cfg_scale > 0.:
                un_x = x.clone()
                un_x[prompt_index] = mask_id
                x_ = torch.cat([x, un_x], dim=0)
                logits = model(x_).logits
                logits, un_logits = torch.chunk(logits, 2, dim=0)
                logits = un_logits + (cfg_scale + 1) * (logits - un_logits)
            else:
                logits = model(x, attention_bias=attention_bias).logits

            logits_with_noise = add_gumbel_noise(logits, temperature=temperature)
            x0 = torch.argmax(logits_with_noise, dim=-1) # b, l

            if remasking == 'low_confidence':
                p = F.softmax(logits.to(torch.float64), dim=-1)
                x0_p = torch.squeeze(
                    torch.gather(p, dim=-1, index=torch.unsqueeze(x0, -1)), -1) # b, l
            elif remasking == 'random':
                x0_p = torch.rand((x0.shape[0], x0.shape[1]), device=x0.device)
            else:
                raise NotImplementedError(remasking)

            x0_p[:, prompt.shape[1] + (num_block + 1) * block_length:] = -np.inf

            x0 = torch.where(mask_index, x0, x)
            confidence = torch.where(mask_index, x0_p, -np.inf)
            # print(confidence.shape)
            transfer_index = torch.zeros_like(x0, dtype=torch.bool, device=x0.device)
            for j in range(confidence.shape[0]):
                _, select_index = torch.topk(confidence[j], k=num_transfer_tokens[j, i])
                transfer_index[j, select_index] = True
            x[transfer_index] = x0[transfer_index]

    return x


def main():
    device = 'cuda'
    model = MMadaModelLM.from_pretrained("/data_storage/ty/MMaDA/mmada-training-stage4-llada-instruct/checkpoint-170000/unwrapped_model", trust_remote_code=True, torch_dtype=torch.bfloat16).to(device).eval()
    tokenizer = AutoTokenizer.from_pretrained("/data_storage/ty/MMaDA/mmada-training-stage4-llada-instruct/checkpoint-170000/unwrapped_model", trust_remote_code=True)
    tokenizer.chat_template = "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n' }}"
    prompt = "Lily can run 12 kilometers per hour for 4 hours. After that, she runs 6 kilometers per hour. How many kilometers can she run in 8 hours?"
    m = [{"role": "user", "content": prompt}, ]
    prompt = tokenizer.apply_chat_template(m, add_generation_prompt=True, tokenize=False)
    input_ids = tokenizer(text=prompt, return_tensors="pt", padding=True, padding_side="left")['input_ids']
    input_ids = torch.tensor(input_ids).to(device)
    out = generate(model, input_ids, steps=128, gen_length=128, block_length=128, temperature=1, cfg_scale=0., remasking='low_confidence')
    print(tokenizer.batch_decode(out[:, input_ids.shape[1]:], skip_special_tokens=True))


if __name__ == '__main__':
    main()