Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import tempfile | |
import unittest | |
import torch | |
from datasets import Dataset, load_dataset | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
from transformers.testing_utils import require_peft | |
from transformers.utils import is_peft_available | |
from trl import RewardConfig, RewardTrainer, maybe_apply_chat_template | |
from trl.trainer.reward_trainer import _tokenize | |
if is_peft_available(): | |
from peft import LoraConfig, TaskType | |
class RewardTrainerTester(unittest.TestCase): | |
def setUp(self): | |
self.model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" | |
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id) | |
self.model = AutoModelForSequenceClassification.from_pretrained(self.model_id) | |
self.model.config.pad_token_id = self.tokenizer.pad_token_id | |
def test_preprocessing_conversational(self): | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
dummy_dataset = load_dataset("trl-internal-testing/zen", "conversational_preference", split="train") | |
training_args = RewardConfig(output_dir=tmp_dir, report_to="none") | |
trainer = RewardTrainer( | |
model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset | |
) | |
dummy_dataset = dummy_dataset.map(maybe_apply_chat_template, fn_kwargs={"tokenizer": self.tokenizer}) | |
dummy_dataset = dummy_dataset.map(_tokenize, batched=True, fn_kwargs={"tokenizer": self.tokenizer}) | |
self.assertDictEqual(trainer.train_dataset[:], dummy_dataset[:]) | |
def test_preprocessing_standard(self): | |
# No chat template, so we load a fresh tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(self.model_id) | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference", split="train") | |
training_args = RewardConfig(output_dir=tmp_dir, report_to="none") | |
trainer = RewardTrainer( | |
model=self.model, args=training_args, processing_class=tokenizer, train_dataset=dummy_dataset | |
) | |
dummy_dataset = dummy_dataset.map(_tokenize, batched=True, fn_kwargs={"tokenizer": tokenizer}) | |
self.assertDictEqual(trainer.train_dataset[:], dummy_dataset[:]) | |
def test_train_full(self): | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
dummy_dataset = load_dataset("trl-internal-testing/zen", "conversational_preference", split="train") | |
training_args = RewardConfig(output_dir=tmp_dir, max_steps=3, report_to="none") | |
trainer = RewardTrainer( | |
model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset | |
) | |
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()} | |
trainer.train() | |
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"]) | |
# Check that the parameters have changed | |
for n, param in previous_trainable_params.items(): | |
new_param = trainer.model.get_parameter(n) | |
if param.sum() != 0: # ignore 0 biases | |
self.assertFalse(torch.allclose(param, new_param, rtol=1e-12, atol=1e-12)) | |
def test_train_full_pretokenized(self): | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
dummy_dataset = load_dataset("trl-internal-testing/zen", "conversational_preference", split="train") | |
dummy_dataset = dummy_dataset.map(maybe_apply_chat_template, fn_kwargs={"tokenizer": self.tokenizer}) | |
dummy_dataset = dummy_dataset.map(_tokenize, batched=True, fn_kwargs={"tokenizer": self.tokenizer}) | |
training_args = RewardConfig(output_dir=tmp_dir, max_steps=3, report_to="none") | |
trainer = RewardTrainer( | |
model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset | |
) | |
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()} | |
trainer.train() | |
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"]) | |
# Check that the parameters have changed | |
for n, param in previous_trainable_params.items(): | |
new_param = trainer.model.get_parameter(n) | |
if param.sum() != 0: # ignore 0 biases | |
self.assertFalse(torch.allclose(param, new_param, rtol=1e-12, atol=1e-12)) | |
def test_train_lora(self): | |
peft_config = LoraConfig( | |
task_type=TaskType.SEQ_CLS, | |
inference_mode=False, | |
r=8, | |
lora_alpha=32, | |
lora_dropout=0.1, | |
) | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
dummy_dataset = load_dataset("trl-internal-testing/zen", "conversational_preference", split="train") | |
training_args = RewardConfig(output_dir=tmp_dir, max_steps=3, report_to="none") | |
trainer = RewardTrainer( | |
model=self.model, | |
args=training_args, | |
processing_class=self.tokenizer, | |
train_dataset=dummy_dataset, | |
peft_config=peft_config, | |
) | |
previous_trainable_params = {} | |
previous_non_trainable_params = {} | |
# due to a change in the way the modules to save are dealt in PEFT. | |
trainable_params_name = ["lora", "modules_to_save"] | |
# check gradients are not None | |
for n, param in trainer.model.named_parameters(): | |
if any(t in n for t in trainable_params_name): | |
previous_trainable_params[n] = param.clone() | |
else: | |
previous_non_trainable_params[n] = param.clone() | |
trainer.train() | |
self.assertIsNotNone(trainer.state.log_history[(-1)]["train_loss"]) | |
# Check that the parameters have changed | |
for n, param in previous_trainable_params.items(): | |
new_param = trainer.model.get_parameter(n) | |
self.assertFalse(torch.allclose(param, new_param, atol=1e-12, rtol=1e-12)) | |
# Check that the non trainable parameters have not changed | |
for n, param in previous_non_trainable_params.items(): | |
new_param = trainer.model.get_parameter(n) | |
self.assertTrue(torch.allclose(param, new_param, atol=1e-12, rtol=1e-12)) | |
def test_train_lora_pretokenized(self): | |
peft_config = LoraConfig( | |
task_type=TaskType.SEQ_CLS, | |
inference_mode=False, | |
r=8, | |
lora_alpha=32, | |
lora_dropout=0.1, | |
) | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
dummy_dataset = load_dataset("trl-internal-testing/zen", "conversational_preference", split="train") | |
dummy_dataset = dummy_dataset.map(maybe_apply_chat_template, fn_kwargs={"tokenizer": self.tokenizer}) | |
dummy_dataset = dummy_dataset.map(_tokenize, batched=True, fn_kwargs={"tokenizer": self.tokenizer}) | |
training_args = RewardConfig(output_dir=tmp_dir, max_steps=3, report_to="none") | |
trainer = RewardTrainer( | |
model=self.model, | |
args=training_args, | |
processing_class=self.tokenizer, | |
train_dataset=dummy_dataset, | |
peft_config=peft_config, | |
) | |
previous_trainable_params = {} | |
previous_non_trainable_params = {} | |
# due to a change in the way the modules to save are dealt in PEFT. | |
trainable_params_name = ["lora", "modules_to_save"] | |
# check gradients are not None | |
for n, param in trainer.model.named_parameters(): | |
if any(t in n for t in trainable_params_name): | |
previous_trainable_params[n] = param.clone() | |
else: | |
previous_non_trainable_params[n] = param.clone() | |
trainer.train() | |
self.assertIsNotNone(trainer.state.log_history[(-1)]["train_loss"]) | |
# Check that the parameters have changed | |
for n, param in previous_trainable_params.items(): | |
new_param = trainer.model.get_parameter(n) | |
self.assertFalse(torch.allclose(param, new_param, atol=1e-12, rtol=1e-12)) | |
# Check that the non trainable parameters have not changed | |
for n, param in previous_non_trainable_params.items(): | |
new_param = trainer.model.get_parameter(n) | |
self.assertTrue(torch.allclose(param, new_param, atol=1e-12, rtol=1e-12)) | |
def test_margin(self): | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
dummy_dataset_dict = { | |
"input_ids_chosen": [ | |
torch.LongTensor([0, 1, 2]), | |
], | |
"attention_mask_chosen": [ | |
torch.LongTensor([1, 1, 1]), | |
], | |
"input_ids_rejected": [ | |
torch.LongTensor([0, 2]), | |
], | |
"attention_mask_rejected": [ | |
torch.LongTensor([1, 1]), | |
], | |
"margin": [ | |
torch.FloatTensor([1.0]), | |
], | |
} | |
dummy_dataset = Dataset.from_dict(dummy_dataset_dict) | |
training_args = RewardConfig(output_dir=tmp_dir, report_to="none") | |
trainer = RewardTrainer( | |
model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset | |
) | |
batch = [dummy_dataset[0]] | |
batch = trainer.data_collator(batch) | |
batch = {k: v.to(trainer.model.device) if isinstance(v, torch.Tensor) else v for k, v in batch.items()} | |
loss, outputs = trainer.compute_loss(trainer.model, batch, return_outputs=True) | |
l_val = -torch.nn.functional.logsigmoid( | |
outputs["rewards_chosen"] - outputs["rewards_rejected"] - batch["margin"] | |
).mean() | |
self.assertLess(abs(loss - l_val), 1e-6) | |
def test_tags(self): | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
dummy_dataset = load_dataset("trl-internal-testing/zen", "conversational_preference", split="train") | |
training_args = RewardConfig(output_dir=tmp_dir, report_to="none") | |
trainer = RewardTrainer( | |
model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset | |
) | |
self.assertEqual(trainer.model.model_tags, trainer._tag_names) | |