trl-sandbox / tests /test_reward_trainer.py
ivangabriele's picture
feat: initialize project
2f5127c verified
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
import torch
from datasets import Dataset, load_dataset
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from transformers.testing_utils import require_peft
from transformers.utils import is_peft_available
from trl import RewardConfig, RewardTrainer, maybe_apply_chat_template
from trl.trainer.reward_trainer import _tokenize
if is_peft_available():
from peft import LoraConfig, TaskType
class RewardTrainerTester(unittest.TestCase):
def setUp(self):
self.model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
self.model = AutoModelForSequenceClassification.from_pretrained(self.model_id)
self.model.config.pad_token_id = self.tokenizer.pad_token_id
def test_preprocessing_conversational(self):
with tempfile.TemporaryDirectory() as tmp_dir:
dummy_dataset = load_dataset("trl-internal-testing/zen", "conversational_preference", split="train")
training_args = RewardConfig(output_dir=tmp_dir, report_to="none")
trainer = RewardTrainer(
model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset
)
dummy_dataset = dummy_dataset.map(maybe_apply_chat_template, fn_kwargs={"tokenizer": self.tokenizer})
dummy_dataset = dummy_dataset.map(_tokenize, batched=True, fn_kwargs={"tokenizer": self.tokenizer})
self.assertDictEqual(trainer.train_dataset[:], dummy_dataset[:])
def test_preprocessing_standard(self):
# No chat template, so we load a fresh tokenizer
tokenizer = AutoTokenizer.from_pretrained(self.model_id)
with tempfile.TemporaryDirectory() as tmp_dir:
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference", split="train")
training_args = RewardConfig(output_dir=tmp_dir, report_to="none")
trainer = RewardTrainer(
model=self.model, args=training_args, processing_class=tokenizer, train_dataset=dummy_dataset
)
dummy_dataset = dummy_dataset.map(_tokenize, batched=True, fn_kwargs={"tokenizer": tokenizer})
self.assertDictEqual(trainer.train_dataset[:], dummy_dataset[:])
def test_train_full(self):
with tempfile.TemporaryDirectory() as tmp_dir:
dummy_dataset = load_dataset("trl-internal-testing/zen", "conversational_preference", split="train")
training_args = RewardConfig(output_dir=tmp_dir, max_steps=3, report_to="none")
trainer = RewardTrainer(
model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the parameters have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
if param.sum() != 0: # ignore 0 biases
self.assertFalse(torch.allclose(param, new_param, rtol=1e-12, atol=1e-12))
def test_train_full_pretokenized(self):
with tempfile.TemporaryDirectory() as tmp_dir:
dummy_dataset = load_dataset("trl-internal-testing/zen", "conversational_preference", split="train")
dummy_dataset = dummy_dataset.map(maybe_apply_chat_template, fn_kwargs={"tokenizer": self.tokenizer})
dummy_dataset = dummy_dataset.map(_tokenize, batched=True, fn_kwargs={"tokenizer": self.tokenizer})
training_args = RewardConfig(output_dir=tmp_dir, max_steps=3, report_to="none")
trainer = RewardTrainer(
model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the parameters have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
if param.sum() != 0: # ignore 0 biases
self.assertFalse(torch.allclose(param, new_param, rtol=1e-12, atol=1e-12))
@require_peft
def test_train_lora(self):
peft_config = LoraConfig(
task_type=TaskType.SEQ_CLS,
inference_mode=False,
r=8,
lora_alpha=32,
lora_dropout=0.1,
)
with tempfile.TemporaryDirectory() as tmp_dir:
dummy_dataset = load_dataset("trl-internal-testing/zen", "conversational_preference", split="train")
training_args = RewardConfig(output_dir=tmp_dir, max_steps=3, report_to="none")
trainer = RewardTrainer(
model=self.model,
args=training_args,
processing_class=self.tokenizer,
train_dataset=dummy_dataset,
peft_config=peft_config,
)
previous_trainable_params = {}
previous_non_trainable_params = {}
# due to a change in the way the modules to save are dealt in PEFT.
trainable_params_name = ["lora", "modules_to_save"]
# check gradients are not None
for n, param in trainer.model.named_parameters():
if any(t in n for t in trainable_params_name):
previous_trainable_params[n] = param.clone()
else:
previous_non_trainable_params[n] = param.clone()
trainer.train()
self.assertIsNotNone(trainer.state.log_history[(-1)]["train_loss"])
# Check that the parameters have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertFalse(torch.allclose(param, new_param, atol=1e-12, rtol=1e-12))
# Check that the non trainable parameters have not changed
for n, param in previous_non_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertTrue(torch.allclose(param, new_param, atol=1e-12, rtol=1e-12))
@require_peft
def test_train_lora_pretokenized(self):
peft_config = LoraConfig(
task_type=TaskType.SEQ_CLS,
inference_mode=False,
r=8,
lora_alpha=32,
lora_dropout=0.1,
)
with tempfile.TemporaryDirectory() as tmp_dir:
dummy_dataset = load_dataset("trl-internal-testing/zen", "conversational_preference", split="train")
dummy_dataset = dummy_dataset.map(maybe_apply_chat_template, fn_kwargs={"tokenizer": self.tokenizer})
dummy_dataset = dummy_dataset.map(_tokenize, batched=True, fn_kwargs={"tokenizer": self.tokenizer})
training_args = RewardConfig(output_dir=tmp_dir, max_steps=3, report_to="none")
trainer = RewardTrainer(
model=self.model,
args=training_args,
processing_class=self.tokenizer,
train_dataset=dummy_dataset,
peft_config=peft_config,
)
previous_trainable_params = {}
previous_non_trainable_params = {}
# due to a change in the way the modules to save are dealt in PEFT.
trainable_params_name = ["lora", "modules_to_save"]
# check gradients are not None
for n, param in trainer.model.named_parameters():
if any(t in n for t in trainable_params_name):
previous_trainable_params[n] = param.clone()
else:
previous_non_trainable_params[n] = param.clone()
trainer.train()
self.assertIsNotNone(trainer.state.log_history[(-1)]["train_loss"])
# Check that the parameters have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertFalse(torch.allclose(param, new_param, atol=1e-12, rtol=1e-12))
# Check that the non trainable parameters have not changed
for n, param in previous_non_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertTrue(torch.allclose(param, new_param, atol=1e-12, rtol=1e-12))
def test_margin(self):
with tempfile.TemporaryDirectory() as tmp_dir:
dummy_dataset_dict = {
"input_ids_chosen": [
torch.LongTensor([0, 1, 2]),
],
"attention_mask_chosen": [
torch.LongTensor([1, 1, 1]),
],
"input_ids_rejected": [
torch.LongTensor([0, 2]),
],
"attention_mask_rejected": [
torch.LongTensor([1, 1]),
],
"margin": [
torch.FloatTensor([1.0]),
],
}
dummy_dataset = Dataset.from_dict(dummy_dataset_dict)
training_args = RewardConfig(output_dir=tmp_dir, report_to="none")
trainer = RewardTrainer(
model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset
)
batch = [dummy_dataset[0]]
batch = trainer.data_collator(batch)
batch = {k: v.to(trainer.model.device) if isinstance(v, torch.Tensor) else v for k, v in batch.items()}
loss, outputs = trainer.compute_loss(trainer.model, batch, return_outputs=True)
l_val = -torch.nn.functional.logsigmoid(
outputs["rewards_chosen"] - outputs["rewards_rejected"] - batch["margin"]
).mean()
self.assertLess(abs(loss - l_val), 1e-6)
def test_tags(self):
with tempfile.TemporaryDirectory() as tmp_dir:
dummy_dataset = load_dataset("trl-internal-testing/zen", "conversational_preference", split="train")
training_args = RewardConfig(output_dir=tmp_dir, report_to="none")
trainer = RewardTrainer(
model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset
)
self.assertEqual(trainer.model.model_tags, trainer._tag_names)