File size: 11,392 Bytes
2f5127c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import tempfile
import unittest

import torch
from datasets import Dataset, load_dataset
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from transformers.testing_utils import require_peft
from transformers.utils import is_peft_available

from trl import RewardConfig, RewardTrainer, maybe_apply_chat_template
from trl.trainer.reward_trainer import _tokenize


if is_peft_available():
    from peft import LoraConfig, TaskType


class RewardTrainerTester(unittest.TestCase):
    def setUp(self):
        self.model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
        self.model = AutoModelForSequenceClassification.from_pretrained(self.model_id)
        self.model.config.pad_token_id = self.tokenizer.pad_token_id

    def test_preprocessing_conversational(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            dummy_dataset = load_dataset("trl-internal-testing/zen", "conversational_preference", split="train")
            training_args = RewardConfig(output_dir=tmp_dir, report_to="none")
            trainer = RewardTrainer(
                model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset
            )
            dummy_dataset = dummy_dataset.map(maybe_apply_chat_template, fn_kwargs={"tokenizer": self.tokenizer})
            dummy_dataset = dummy_dataset.map(_tokenize, batched=True, fn_kwargs={"tokenizer": self.tokenizer})
            self.assertDictEqual(trainer.train_dataset[:], dummy_dataset[:])

    def test_preprocessing_standard(self):
        # No chat template, so we load a fresh tokenizer
        tokenizer = AutoTokenizer.from_pretrained(self.model_id)
        with tempfile.TemporaryDirectory() as tmp_dir:
            dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference", split="train")
            training_args = RewardConfig(output_dir=tmp_dir, report_to="none")
            trainer = RewardTrainer(
                model=self.model, args=training_args, processing_class=tokenizer, train_dataset=dummy_dataset
            )
            dummy_dataset = dummy_dataset.map(_tokenize, batched=True, fn_kwargs={"tokenizer": tokenizer})
            self.assertDictEqual(trainer.train_dataset[:], dummy_dataset[:])

    def test_train_full(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            dummy_dataset = load_dataset("trl-internal-testing/zen", "conversational_preference", split="train")
            training_args = RewardConfig(output_dir=tmp_dir, max_steps=3, report_to="none")
            trainer = RewardTrainer(
                model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset
            )
            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
            # Check that the parameters have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                if param.sum() != 0:  # ignore 0 biases
                    self.assertFalse(torch.allclose(param, new_param, rtol=1e-12, atol=1e-12))

    def test_train_full_pretokenized(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            dummy_dataset = load_dataset("trl-internal-testing/zen", "conversational_preference", split="train")
            dummy_dataset = dummy_dataset.map(maybe_apply_chat_template, fn_kwargs={"tokenizer": self.tokenizer})
            dummy_dataset = dummy_dataset.map(_tokenize, batched=True, fn_kwargs={"tokenizer": self.tokenizer})
            training_args = RewardConfig(output_dir=tmp_dir, max_steps=3, report_to="none")
            trainer = RewardTrainer(
                model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset
            )
            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
            # Check that the parameters have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                if param.sum() != 0:  # ignore 0 biases
                    self.assertFalse(torch.allclose(param, new_param, rtol=1e-12, atol=1e-12))

    @require_peft
    def test_train_lora(self):
        peft_config = LoraConfig(
            task_type=TaskType.SEQ_CLS,
            inference_mode=False,
            r=8,
            lora_alpha=32,
            lora_dropout=0.1,
        )
        with tempfile.TemporaryDirectory() as tmp_dir:
            dummy_dataset = load_dataset("trl-internal-testing/zen", "conversational_preference", split="train")
            training_args = RewardConfig(output_dir=tmp_dir, max_steps=3, report_to="none")
            trainer = RewardTrainer(
                model=self.model,
                args=training_args,
                processing_class=self.tokenizer,
                train_dataset=dummy_dataset,
                peft_config=peft_config,
            )
            previous_trainable_params = {}
            previous_non_trainable_params = {}

            # due to a change in the way the modules to save are dealt in PEFT.
            trainable_params_name = ["lora", "modules_to_save"]

            # check gradients are not None
            for n, param in trainer.model.named_parameters():
                if any(t in n for t in trainable_params_name):
                    previous_trainable_params[n] = param.clone()
                else:
                    previous_non_trainable_params[n] = param.clone()

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[(-1)]["train_loss"])

            # Check that the parameters have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                self.assertFalse(torch.allclose(param, new_param, atol=1e-12, rtol=1e-12))

            # Check that the non trainable parameters have not changed
            for n, param in previous_non_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                self.assertTrue(torch.allclose(param, new_param, atol=1e-12, rtol=1e-12))

    @require_peft
    def test_train_lora_pretokenized(self):
        peft_config = LoraConfig(
            task_type=TaskType.SEQ_CLS,
            inference_mode=False,
            r=8,
            lora_alpha=32,
            lora_dropout=0.1,
        )
        with tempfile.TemporaryDirectory() as tmp_dir:
            dummy_dataset = load_dataset("trl-internal-testing/zen", "conversational_preference", split="train")
            dummy_dataset = dummy_dataset.map(maybe_apply_chat_template, fn_kwargs={"tokenizer": self.tokenizer})
            dummy_dataset = dummy_dataset.map(_tokenize, batched=True, fn_kwargs={"tokenizer": self.tokenizer})
            training_args = RewardConfig(output_dir=tmp_dir, max_steps=3, report_to="none")
            trainer = RewardTrainer(
                model=self.model,
                args=training_args,
                processing_class=self.tokenizer,
                train_dataset=dummy_dataset,
                peft_config=peft_config,
            )
            previous_trainable_params = {}
            previous_non_trainable_params = {}

            # due to a change in the way the modules to save are dealt in PEFT.
            trainable_params_name = ["lora", "modules_to_save"]

            # check gradients are not None
            for n, param in trainer.model.named_parameters():
                if any(t in n for t in trainable_params_name):
                    previous_trainable_params[n] = param.clone()
                else:
                    previous_non_trainable_params[n] = param.clone()

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[(-1)]["train_loss"])

            # Check that the parameters have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                self.assertFalse(torch.allclose(param, new_param, atol=1e-12, rtol=1e-12))

            # Check that the non trainable parameters have not changed
            for n, param in previous_non_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                self.assertTrue(torch.allclose(param, new_param, atol=1e-12, rtol=1e-12))

    def test_margin(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            dummy_dataset_dict = {
                "input_ids_chosen": [
                    torch.LongTensor([0, 1, 2]),
                ],
                "attention_mask_chosen": [
                    torch.LongTensor([1, 1, 1]),
                ],
                "input_ids_rejected": [
                    torch.LongTensor([0, 2]),
                ],
                "attention_mask_rejected": [
                    torch.LongTensor([1, 1]),
                ],
                "margin": [
                    torch.FloatTensor([1.0]),
                ],
            }
            dummy_dataset = Dataset.from_dict(dummy_dataset_dict)
            training_args = RewardConfig(output_dir=tmp_dir, report_to="none")
            trainer = RewardTrainer(
                model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset
            )

            batch = [dummy_dataset[0]]
            batch = trainer.data_collator(batch)
            batch = {k: v.to(trainer.model.device) if isinstance(v, torch.Tensor) else v for k, v in batch.items()}
            loss, outputs = trainer.compute_loss(trainer.model, batch, return_outputs=True)

            l_val = -torch.nn.functional.logsigmoid(
                outputs["rewards_chosen"] - outputs["rewards_rejected"] - batch["margin"]
            ).mean()

            self.assertLess(abs(loss - l_val), 1e-6)

    def test_tags(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            dummy_dataset = load_dataset("trl-internal-testing/zen", "conversational_preference", split="train")
            training_args = RewardConfig(output_dir=tmp_dir, report_to="none")
            trainer = RewardTrainer(
                model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset
            )
            self.assertEqual(trainer.model.model_tags, trainer._tag_names)