Spaces:
Paused
Paused
File size: 11,392 Bytes
2f5127c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
import torch
from datasets import Dataset, load_dataset
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from transformers.testing_utils import require_peft
from transformers.utils import is_peft_available
from trl import RewardConfig, RewardTrainer, maybe_apply_chat_template
from trl.trainer.reward_trainer import _tokenize
if is_peft_available():
from peft import LoraConfig, TaskType
class RewardTrainerTester(unittest.TestCase):
def setUp(self):
self.model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
self.model = AutoModelForSequenceClassification.from_pretrained(self.model_id)
self.model.config.pad_token_id = self.tokenizer.pad_token_id
def test_preprocessing_conversational(self):
with tempfile.TemporaryDirectory() as tmp_dir:
dummy_dataset = load_dataset("trl-internal-testing/zen", "conversational_preference", split="train")
training_args = RewardConfig(output_dir=tmp_dir, report_to="none")
trainer = RewardTrainer(
model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset
)
dummy_dataset = dummy_dataset.map(maybe_apply_chat_template, fn_kwargs={"tokenizer": self.tokenizer})
dummy_dataset = dummy_dataset.map(_tokenize, batched=True, fn_kwargs={"tokenizer": self.tokenizer})
self.assertDictEqual(trainer.train_dataset[:], dummy_dataset[:])
def test_preprocessing_standard(self):
# No chat template, so we load a fresh tokenizer
tokenizer = AutoTokenizer.from_pretrained(self.model_id)
with tempfile.TemporaryDirectory() as tmp_dir:
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference", split="train")
training_args = RewardConfig(output_dir=tmp_dir, report_to="none")
trainer = RewardTrainer(
model=self.model, args=training_args, processing_class=tokenizer, train_dataset=dummy_dataset
)
dummy_dataset = dummy_dataset.map(_tokenize, batched=True, fn_kwargs={"tokenizer": tokenizer})
self.assertDictEqual(trainer.train_dataset[:], dummy_dataset[:])
def test_train_full(self):
with tempfile.TemporaryDirectory() as tmp_dir:
dummy_dataset = load_dataset("trl-internal-testing/zen", "conversational_preference", split="train")
training_args = RewardConfig(output_dir=tmp_dir, max_steps=3, report_to="none")
trainer = RewardTrainer(
model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the parameters have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
if param.sum() != 0: # ignore 0 biases
self.assertFalse(torch.allclose(param, new_param, rtol=1e-12, atol=1e-12))
def test_train_full_pretokenized(self):
with tempfile.TemporaryDirectory() as tmp_dir:
dummy_dataset = load_dataset("trl-internal-testing/zen", "conversational_preference", split="train")
dummy_dataset = dummy_dataset.map(maybe_apply_chat_template, fn_kwargs={"tokenizer": self.tokenizer})
dummy_dataset = dummy_dataset.map(_tokenize, batched=True, fn_kwargs={"tokenizer": self.tokenizer})
training_args = RewardConfig(output_dir=tmp_dir, max_steps=3, report_to="none")
trainer = RewardTrainer(
model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the parameters have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
if param.sum() != 0: # ignore 0 biases
self.assertFalse(torch.allclose(param, new_param, rtol=1e-12, atol=1e-12))
@require_peft
def test_train_lora(self):
peft_config = LoraConfig(
task_type=TaskType.SEQ_CLS,
inference_mode=False,
r=8,
lora_alpha=32,
lora_dropout=0.1,
)
with tempfile.TemporaryDirectory() as tmp_dir:
dummy_dataset = load_dataset("trl-internal-testing/zen", "conversational_preference", split="train")
training_args = RewardConfig(output_dir=tmp_dir, max_steps=3, report_to="none")
trainer = RewardTrainer(
model=self.model,
args=training_args,
processing_class=self.tokenizer,
train_dataset=dummy_dataset,
peft_config=peft_config,
)
previous_trainable_params = {}
previous_non_trainable_params = {}
# due to a change in the way the modules to save are dealt in PEFT.
trainable_params_name = ["lora", "modules_to_save"]
# check gradients are not None
for n, param in trainer.model.named_parameters():
if any(t in n for t in trainable_params_name):
previous_trainable_params[n] = param.clone()
else:
previous_non_trainable_params[n] = param.clone()
trainer.train()
self.assertIsNotNone(trainer.state.log_history[(-1)]["train_loss"])
# Check that the parameters have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertFalse(torch.allclose(param, new_param, atol=1e-12, rtol=1e-12))
# Check that the non trainable parameters have not changed
for n, param in previous_non_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertTrue(torch.allclose(param, new_param, atol=1e-12, rtol=1e-12))
@require_peft
def test_train_lora_pretokenized(self):
peft_config = LoraConfig(
task_type=TaskType.SEQ_CLS,
inference_mode=False,
r=8,
lora_alpha=32,
lora_dropout=0.1,
)
with tempfile.TemporaryDirectory() as tmp_dir:
dummy_dataset = load_dataset("trl-internal-testing/zen", "conversational_preference", split="train")
dummy_dataset = dummy_dataset.map(maybe_apply_chat_template, fn_kwargs={"tokenizer": self.tokenizer})
dummy_dataset = dummy_dataset.map(_tokenize, batched=True, fn_kwargs={"tokenizer": self.tokenizer})
training_args = RewardConfig(output_dir=tmp_dir, max_steps=3, report_to="none")
trainer = RewardTrainer(
model=self.model,
args=training_args,
processing_class=self.tokenizer,
train_dataset=dummy_dataset,
peft_config=peft_config,
)
previous_trainable_params = {}
previous_non_trainable_params = {}
# due to a change in the way the modules to save are dealt in PEFT.
trainable_params_name = ["lora", "modules_to_save"]
# check gradients are not None
for n, param in trainer.model.named_parameters():
if any(t in n for t in trainable_params_name):
previous_trainable_params[n] = param.clone()
else:
previous_non_trainable_params[n] = param.clone()
trainer.train()
self.assertIsNotNone(trainer.state.log_history[(-1)]["train_loss"])
# Check that the parameters have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertFalse(torch.allclose(param, new_param, atol=1e-12, rtol=1e-12))
# Check that the non trainable parameters have not changed
for n, param in previous_non_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertTrue(torch.allclose(param, new_param, atol=1e-12, rtol=1e-12))
def test_margin(self):
with tempfile.TemporaryDirectory() as tmp_dir:
dummy_dataset_dict = {
"input_ids_chosen": [
torch.LongTensor([0, 1, 2]),
],
"attention_mask_chosen": [
torch.LongTensor([1, 1, 1]),
],
"input_ids_rejected": [
torch.LongTensor([0, 2]),
],
"attention_mask_rejected": [
torch.LongTensor([1, 1]),
],
"margin": [
torch.FloatTensor([1.0]),
],
}
dummy_dataset = Dataset.from_dict(dummy_dataset_dict)
training_args = RewardConfig(output_dir=tmp_dir, report_to="none")
trainer = RewardTrainer(
model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset
)
batch = [dummy_dataset[0]]
batch = trainer.data_collator(batch)
batch = {k: v.to(trainer.model.device) if isinstance(v, torch.Tensor) else v for k, v in batch.items()}
loss, outputs = trainer.compute_loss(trainer.model, batch, return_outputs=True)
l_val = -torch.nn.functional.logsigmoid(
outputs["rewards_chosen"] - outputs["rewards_rejected"] - batch["margin"]
).mean()
self.assertLess(abs(loss - l_val), 1e-6)
def test_tags(self):
with tempfile.TemporaryDirectory() as tmp_dir:
dummy_dataset = load_dataset("trl-internal-testing/zen", "conversational_preference", split="train")
training_args = RewardConfig(output_dir=tmp_dir, report_to="none")
trainer = RewardTrainer(
model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset
)
self.assertEqual(trainer.model.model_tags, trainer._tag_names)
|