Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import tempfile | |
import unittest | |
import torch | |
from datasets import load_dataset | |
from transformers import AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer | |
from transformers.testing_utils import require_peft | |
from transformers.utils import is_peft_available | |
from trl import PPOConfig, PPOTrainer | |
from trl.trainer.utils import SIMPLE_CHAT_TEMPLATE | |
if is_peft_available(): | |
from peft import LoraConfig | |
class TestPPOTrainer(unittest.TestCase): | |
def setUp(self): | |
# Set up the models and tokenizer using the test model | |
self.model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" | |
self.model = AutoModelForCausalLM.from_pretrained(self.model_id) | |
self.ref_model = AutoModelForCausalLM.from_pretrained(self.model_id) | |
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id, padding_side="left") | |
self.tokenizer.add_special_tokens({"pad_token": "[PAD]"}) | |
if self.tokenizer.chat_template is None: | |
self.tokenizer.chat_template = SIMPLE_CHAT_TEMPLATE | |
# Add reward and value models as in ppo.py | |
reward_model_id = "trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5" | |
self.value_model = AutoModelForSequenceClassification.from_pretrained(reward_model_id, num_labels=1) | |
self.reward_model = AutoModelForSequenceClassification.from_pretrained(reward_model_id, num_labels=1) | |
# Load dataset | |
raw_dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only") | |
def tokenize(example, tokenizer): | |
tokenized = tokenizer(text=example["prompt"]) | |
if tokenizer.eos_token_id is not None and tokenized["input_ids"][-1] != tokenizer.eos_token_id: | |
tokenized["input_ids"] = tokenized["input_ids"] + [tokenizer.eos_token_id] | |
tokenized["attention_mask"] = tokenized["attention_mask"] + [1] | |
return tokenized | |
self.raw_dataset = raw_dataset.map(tokenize, fn_kwargs={"tokenizer": self.tokenizer}, remove_columns="prompt") | |
def test_basic_training(self): | |
"""Test basic PPO training configuration and verify model updates.""" | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
# Capture initial weights | |
initial_critic_weights = {} | |
initial_policy_weights = {} | |
for name, param in self.value_model.named_parameters(): | |
initial_critic_weights[name] = param.clone().detach() | |
for name, param in self.model.named_parameters(): | |
initial_policy_weights[name] = param.clone().detach() | |
# Configure training args similar to example script | |
training_args = PPOConfig( | |
output_dir=tmp_dir, | |
per_device_train_batch_size=4, | |
per_device_eval_batch_size=2, | |
num_ppo_epochs=2, # Decrease number of PPO epochs to speed up test | |
report_to="none", | |
) | |
# Create trainer | |
trainer = PPOTrainer( | |
args=training_args, | |
processing_class=self.tokenizer, | |
model=self.model, | |
ref_model=self.ref_model, | |
reward_model=self.reward_model, | |
value_model=self.value_model, | |
train_dataset=self.raw_dataset["train"], | |
eval_dataset=self.raw_dataset["test"], | |
) | |
# Train | |
trainer.train() | |
# Check if critic weights have been updated | |
critic_weights_updated = False | |
for name, param in trainer.model.value_model.named_parameters(): | |
if not torch.allclose(initial_critic_weights[name], param.to("cpu")): | |
critic_weights_updated = True | |
break | |
# Check if policy weights have been updated | |
policy_weights_updated = False | |
for name, param in trainer.model.policy.named_parameters(): | |
if not torch.allclose(initial_policy_weights[name], param.to("cpu")): | |
policy_weights_updated = True | |
break | |
self.assertTrue(critic_weights_updated, "Critic weights were not updated during training") | |
self.assertTrue(policy_weights_updated, "Policy weights were not updated during training") | |
def test_peft_training(self): | |
"""Test PPO training with PEFT configuration and verify model updates.""" | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
# Capture initial weights | |
initial_critic_weights = {} | |
initial_policy_weights = {} | |
for name, param in self.value_model.named_parameters(): | |
initial_critic_weights[name] = param.clone().detach() | |
for name, param in self.model.named_parameters(): | |
initial_policy_weights[name] = param.clone().detach() | |
# Configure training args | |
training_args = PPOConfig( | |
output_dir=tmp_dir, | |
per_device_train_batch_size=4, | |
per_device_eval_batch_size=2, | |
num_ppo_epochs=2, # Decrease number of PPO epochs to speed up test | |
report_to="none", | |
) | |
# Configure PEFT | |
peft_config = LoraConfig( | |
r=32, | |
lora_alpha=16, | |
lora_dropout=0.05, | |
bias="none", | |
task_type="CAUSAL_LM", | |
) | |
# Create trainer with PEFT | |
trainer = PPOTrainer( | |
args=training_args, | |
processing_class=self.tokenizer, | |
model=self.model, | |
ref_model=None, | |
reward_model=self.reward_model, | |
value_model=self.value_model, | |
train_dataset=self.raw_dataset["train"], | |
eval_dataset=self.raw_dataset["test"], | |
peft_config=peft_config, | |
) | |
# Train | |
trainer.train() | |
# Check if critic weights have been updated | |
critic_weights_updated = False | |
for name, param in trainer.model.value_model.named_parameters(): | |
if name in initial_critic_weights and not torch.allclose( | |
initial_critic_weights[name], param.to("cpu") | |
): | |
critic_weights_updated = True | |
break | |
# Check if policy weights have been updated - for PEFT we check the LoRA weights | |
policy_weights_updated = False | |
for name, param in trainer.model.policy.named_parameters(): | |
if "lora" in name.lower() and param.requires_grad: # Only check LoRA weights | |
# New weights should be non-zero if they've been updated | |
if not torch.allclose(param, torch.zeros_like(param)): | |
policy_weights_updated = True | |
break | |
self.assertTrue(critic_weights_updated, "Critic weights were not updated during training") | |
self.assertTrue(policy_weights_updated, "Policy LoRA weights were not updated during training") | |