File size: 7,808 Bytes
2f5127c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import tempfile
import unittest

import torch
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer
from transformers.testing_utils import require_peft
from transformers.utils import is_peft_available

from trl import PPOConfig, PPOTrainer
from trl.trainer.utils import SIMPLE_CHAT_TEMPLATE


if is_peft_available():
    from peft import LoraConfig


class TestPPOTrainer(unittest.TestCase):
    def setUp(self):
        # Set up the models and tokenizer using the test model
        self.model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
        self.model = AutoModelForCausalLM.from_pretrained(self.model_id)
        self.ref_model = AutoModelForCausalLM.from_pretrained(self.model_id)
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_id, padding_side="left")
        self.tokenizer.add_special_tokens({"pad_token": "[PAD]"})

        if self.tokenizer.chat_template is None:
            self.tokenizer.chat_template = SIMPLE_CHAT_TEMPLATE

        # Add reward and value models as in ppo.py
        reward_model_id = "trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5"
        self.value_model = AutoModelForSequenceClassification.from_pretrained(reward_model_id, num_labels=1)
        self.reward_model = AutoModelForSequenceClassification.from_pretrained(reward_model_id, num_labels=1)

        # Load dataset
        raw_dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only")

        def tokenize(example, tokenizer):
            tokenized = tokenizer(text=example["prompt"])
            if tokenizer.eos_token_id is not None and tokenized["input_ids"][-1] != tokenizer.eos_token_id:
                tokenized["input_ids"] = tokenized["input_ids"] + [tokenizer.eos_token_id]
                tokenized["attention_mask"] = tokenized["attention_mask"] + [1]
            return tokenized

        self.raw_dataset = raw_dataset.map(tokenize, fn_kwargs={"tokenizer": self.tokenizer}, remove_columns="prompt")

    def test_basic_training(self):
        """Test basic PPO training configuration and verify model updates."""
        with tempfile.TemporaryDirectory() as tmp_dir:
            # Capture initial weights
            initial_critic_weights = {}
            initial_policy_weights = {}
            for name, param in self.value_model.named_parameters():
                initial_critic_weights[name] = param.clone().detach()
            for name, param in self.model.named_parameters():
                initial_policy_weights[name] = param.clone().detach()

            # Configure training args similar to example script
            training_args = PPOConfig(
                output_dir=tmp_dir,
                per_device_train_batch_size=4,
                per_device_eval_batch_size=2,
                num_ppo_epochs=2,  # Decrease number of PPO epochs to speed up test
                report_to="none",
            )

            # Create trainer
            trainer = PPOTrainer(
                args=training_args,
                processing_class=self.tokenizer,
                model=self.model,
                ref_model=self.ref_model,
                reward_model=self.reward_model,
                value_model=self.value_model,
                train_dataset=self.raw_dataset["train"],
                eval_dataset=self.raw_dataset["test"],
            )

            # Train
            trainer.train()

            # Check if critic weights have been updated
            critic_weights_updated = False
            for name, param in trainer.model.value_model.named_parameters():
                if not torch.allclose(initial_critic_weights[name], param.to("cpu")):
                    critic_weights_updated = True
                    break

            # Check if policy weights have been updated
            policy_weights_updated = False
            for name, param in trainer.model.policy.named_parameters():
                if not torch.allclose(initial_policy_weights[name], param.to("cpu")):
                    policy_weights_updated = True
                    break

            self.assertTrue(critic_weights_updated, "Critic weights were not updated during training")
            self.assertTrue(policy_weights_updated, "Policy weights were not updated during training")

    @require_peft
    def test_peft_training(self):
        """Test PPO training with PEFT configuration and verify model updates."""
        with tempfile.TemporaryDirectory() as tmp_dir:
            # Capture initial weights
            initial_critic_weights = {}
            initial_policy_weights = {}
            for name, param in self.value_model.named_parameters():
                initial_critic_weights[name] = param.clone().detach()
            for name, param in self.model.named_parameters():
                initial_policy_weights[name] = param.clone().detach()

            # Configure training args
            training_args = PPOConfig(
                output_dir=tmp_dir,
                per_device_train_batch_size=4,
                per_device_eval_batch_size=2,
                num_ppo_epochs=2,  # Decrease number of PPO epochs to speed up test
                report_to="none",
            )

            # Configure PEFT
            peft_config = LoraConfig(
                r=32,
                lora_alpha=16,
                lora_dropout=0.05,
                bias="none",
                task_type="CAUSAL_LM",
            )

            # Create trainer with PEFT
            trainer = PPOTrainer(
                args=training_args,
                processing_class=self.tokenizer,
                model=self.model,
                ref_model=None,
                reward_model=self.reward_model,
                value_model=self.value_model,
                train_dataset=self.raw_dataset["train"],
                eval_dataset=self.raw_dataset["test"],
                peft_config=peft_config,
            )

            # Train
            trainer.train()

            # Check if critic weights have been updated
            critic_weights_updated = False
            for name, param in trainer.model.value_model.named_parameters():
                if name in initial_critic_weights and not torch.allclose(
                    initial_critic_weights[name], param.to("cpu")
                ):
                    critic_weights_updated = True
                    break

            # Check if policy weights have been updated - for PEFT we check the LoRA weights
            policy_weights_updated = False
            for name, param in trainer.model.policy.named_parameters():
                if "lora" in name.lower() and param.requires_grad:  # Only check LoRA weights
                    # New weights should be non-zero if they've been updated
                    if not torch.allclose(param, torch.zeros_like(param)):
                        policy_weights_updated = True
                        break

            self.assertTrue(critic_weights_updated, "Critic weights were not updated during training")
            self.assertTrue(policy_weights_updated, "Policy LoRA weights were not updated during training")