Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import tempfile | |
import unittest | |
from datasets import load_dataset | |
from parameterized import parameterized | |
from transformers import AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer | |
from transformers.testing_utils import require_peft | |
from transformers.utils import is_peft_available | |
from trl import NashMDConfig, NashMDTrainer | |
from .testing_utils import RandomPairwiseJudge, require_llm_blender | |
if is_peft_available(): | |
from peft import LoraConfig, get_peft_model | |
class TestNashMDTrainer(unittest.TestCase): | |
def setUp(self): | |
self.model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" | |
self.model = AutoModelForCausalLM.from_pretrained(self.model_id) | |
self.ref_model = AutoModelForCausalLM.from_pretrained(self.model_id) | |
self.reward_model = AutoModelForSequenceClassification.from_pretrained(self.model_id, num_labels=1) | |
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id) | |
self.tokenizer.pad_token = self.tokenizer.eos_token | |
def test_nash_md_trainer_training(self, config_name): | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = NashMDConfig( | |
output_dir=tmp_dir, | |
per_device_train_batch_size=2, | |
max_steps=3, | |
remove_unused_columns=False, | |
gradient_accumulation_steps=1, | |
learning_rate=9e-1, | |
eval_strategy="steps", | |
report_to="none", | |
) | |
dummy_dataset = load_dataset("trl-internal-testing/zen", config_name) | |
trainer = NashMDTrainer( | |
model=self.model, | |
ref_model=self.ref_model, | |
reward_model=self.reward_model, | |
args=training_args, | |
processing_class=self.tokenizer, | |
train_dataset=dummy_dataset["train"], | |
eval_dataset=dummy_dataset["test"], | |
) | |
trainer.train() | |
# Check if training loss is available | |
self.assertIn("train_loss", trainer.state.log_history[-1]) | |
def test_training_with_peft(self): | |
lora_config = LoraConfig(r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM") | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = NashMDConfig( | |
output_dir=tmp_dir, | |
per_device_train_batch_size=2, | |
max_steps=3, | |
learning_rate=5.0e-7, | |
eval_strategy="steps", | |
report_to="none", | |
) | |
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only") | |
trainer = NashMDTrainer( | |
model=self.model, | |
reward_model=self.reward_model, | |
args=training_args, | |
processing_class=self.tokenizer, | |
train_dataset=dummy_dataset["train"], | |
eval_dataset=dummy_dataset["test"], | |
peft_config=lora_config, | |
) | |
trainer.train() | |
# Check if training loss is available | |
self.assertIn("train_loss", trainer.state.log_history[-1]) | |
def test_training_with_peft_and_ref_model(self): | |
lora_config = LoraConfig(r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM") | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = NashMDConfig( | |
output_dir=tmp_dir, | |
per_device_train_batch_size=2, | |
max_steps=3, | |
learning_rate=5.0e-7, | |
eval_strategy="steps", | |
report_to="none", | |
) | |
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only") | |
trainer = NashMDTrainer( | |
model=self.model, | |
ref_model=self.ref_model, | |
reward_model=self.reward_model, | |
args=training_args, | |
processing_class=self.tokenizer, | |
train_dataset=dummy_dataset["train"], | |
eval_dataset=dummy_dataset["test"], | |
peft_config=lora_config, | |
) | |
trainer.train() | |
# Check if training loss is available | |
self.assertIn("train_loss", trainer.state.log_history[-1]) | |
def test_training_with_peft_model_and_peft_config(self): | |
model_lora_config = LoraConfig(r=8, lora_alpha=16, lora_dropout=0.1, bias="none", task_type="CAUSAL_LM") | |
model = get_peft_model(self.model, model_lora_config) | |
# we want only the "train adapter" to be trained | |
lora_train_config = LoraConfig(r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM") | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = NashMDConfig( | |
output_dir=tmp_dir, | |
per_device_train_batch_size=2, | |
max_steps=3, | |
learning_rate=5.0e-7, | |
eval_strategy="steps", | |
report_to="none", | |
) | |
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only") | |
trainer = NashMDTrainer( | |
model=model, | |
reward_model=self.reward_model, | |
args=training_args, | |
processing_class=self.tokenizer, | |
train_dataset=dummy_dataset["train"], | |
eval_dataset=dummy_dataset["test"], | |
peft_config=lora_train_config, | |
) | |
trainer.train() | |
# Check if training loss is available | |
self.assertIn("train_loss", trainer.state.log_history[-1]) | |
def test_training_pre_pefted_model_implicit_ref_with_reward_model(self): | |
lora_config = LoraConfig(r=8, lora_alpha=16, lora_dropout=0.1, bias="none", task_type="CAUSAL_LM") | |
# self.model from setUp is a base AutoModelForCausalLM | |
peft_model_instance = get_peft_model(self.model, lora_config) | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = NashMDConfig( | |
output_dir=tmp_dir, | |
per_device_train_batch_size=1, # Keep small for quick test | |
max_steps=2, # Few steps | |
learning_rate=5.0e-7, | |
eval_strategy="no", | |
report_to="none", | |
remove_unused_columns=False, # Important for the dummy dataset | |
) | |
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only")["train"] | |
trainer = NashMDTrainer( | |
model=peft_model_instance, # Pass the already PEFT model | |
ref_model=None, # Implicit reference from peft_model_instance's base | |
reward_model=self.reward_model, # To trigger GeometricMixtureWrapper path | |
args=training_args, | |
processing_class=self.tokenizer, | |
train_dataset=dummy_dataset, | |
# peft_config is not passed, as model is already PEFT | |
) | |
trainer.train() | |
self.assertIn("train_loss", trainer.state.log_history[-1]) | |
def test_nash_md_trainer_judge_training(self, config_name): | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = NashMDConfig( | |
output_dir=tmp_dir, | |
per_device_train_batch_size=2, | |
max_steps=3, | |
remove_unused_columns=False, | |
gradient_accumulation_steps=1, | |
learning_rate=9e-1, | |
eval_strategy="steps", | |
report_to="none", | |
) | |
dummy_dataset = load_dataset("trl-internal-testing/zen", config_name) | |
judge = RandomPairwiseJudge() | |
trainer = NashMDTrainer( | |
model=self.model, | |
ref_model=self.ref_model, | |
judge=judge, | |
args=training_args, | |
processing_class=self.tokenizer, | |
train_dataset=dummy_dataset["train"], | |
eval_dataset=dummy_dataset["test"], | |
) | |
trainer.train() | |
# Check if training loss is available | |
self.assertIn("train_loss", trainer.state.log_history[-1]) | |