File size: 9,175 Bytes
2f5127c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import tempfile
import unittest

from datasets import load_dataset
from parameterized import parameterized
from transformers import AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer
from transformers.testing_utils import require_peft
from transformers.utils import is_peft_available

from trl import NashMDConfig, NashMDTrainer

from .testing_utils import RandomPairwiseJudge, require_llm_blender


if is_peft_available():
    from peft import LoraConfig, get_peft_model


class TestNashMDTrainer(unittest.TestCase):
    def setUp(self):
        self.model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
        self.model = AutoModelForCausalLM.from_pretrained(self.model_id)
        self.ref_model = AutoModelForCausalLM.from_pretrained(self.model_id)
        self.reward_model = AutoModelForSequenceClassification.from_pretrained(self.model_id, num_labels=1)
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
        self.tokenizer.pad_token = self.tokenizer.eos_token

    @parameterized.expand([("standard_prompt_only",), ("conversational_prompt_only",)])
    def test_nash_md_trainer_training(self, config_name):
        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = NashMDConfig(
                output_dir=tmp_dir,
                per_device_train_batch_size=2,
                max_steps=3,
                remove_unused_columns=False,
                gradient_accumulation_steps=1,
                learning_rate=9e-1,
                eval_strategy="steps",
                report_to="none",
            )
            dummy_dataset = load_dataset("trl-internal-testing/zen", config_name)

            trainer = NashMDTrainer(
                model=self.model,
                ref_model=self.ref_model,
                reward_model=self.reward_model,
                args=training_args,
                processing_class=self.tokenizer,
                train_dataset=dummy_dataset["train"],
                eval_dataset=dummy_dataset["test"],
            )

            trainer.train()

            # Check if training loss is available
            self.assertIn("train_loss", trainer.state.log_history[-1])

    @require_peft
    def test_training_with_peft(self):
        lora_config = LoraConfig(r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM")
        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = NashMDConfig(
                output_dir=tmp_dir,
                per_device_train_batch_size=2,
                max_steps=3,
                learning_rate=5.0e-7,
                eval_strategy="steps",
                report_to="none",
            )
            dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only")

            trainer = NashMDTrainer(
                model=self.model,
                reward_model=self.reward_model,
                args=training_args,
                processing_class=self.tokenizer,
                train_dataset=dummy_dataset["train"],
                eval_dataset=dummy_dataset["test"],
                peft_config=lora_config,
            )

            trainer.train()

            # Check if training loss is available
            self.assertIn("train_loss", trainer.state.log_history[-1])

    @require_peft
    def test_training_with_peft_and_ref_model(self):
        lora_config = LoraConfig(r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM")
        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = NashMDConfig(
                output_dir=tmp_dir,
                per_device_train_batch_size=2,
                max_steps=3,
                learning_rate=5.0e-7,
                eval_strategy="steps",
                report_to="none",
            )
            dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only")

            trainer = NashMDTrainer(
                model=self.model,
                ref_model=self.ref_model,
                reward_model=self.reward_model,
                args=training_args,
                processing_class=self.tokenizer,
                train_dataset=dummy_dataset["train"],
                eval_dataset=dummy_dataset["test"],
                peft_config=lora_config,
            )

            trainer.train()

            # Check if training loss is available
            self.assertIn("train_loss", trainer.state.log_history[-1])

    @require_peft
    def test_training_with_peft_model_and_peft_config(self):
        model_lora_config = LoraConfig(r=8, lora_alpha=16, lora_dropout=0.1, bias="none", task_type="CAUSAL_LM")
        model = get_peft_model(self.model, model_lora_config)
        # we want only the "train adapter" to be trained
        lora_train_config = LoraConfig(r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM")
        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = NashMDConfig(
                output_dir=tmp_dir,
                per_device_train_batch_size=2,
                max_steps=3,
                learning_rate=5.0e-7,
                eval_strategy="steps",
                report_to="none",
            )
            dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only")

            trainer = NashMDTrainer(
                model=model,
                reward_model=self.reward_model,
                args=training_args,
                processing_class=self.tokenizer,
                train_dataset=dummy_dataset["train"],
                eval_dataset=dummy_dataset["test"],
                peft_config=lora_train_config,
            )

            trainer.train()

            # Check if training loss is available
            self.assertIn("train_loss", trainer.state.log_history[-1])

    @require_peft
    def test_training_pre_pefted_model_implicit_ref_with_reward_model(self):
        lora_config = LoraConfig(r=8, lora_alpha=16, lora_dropout=0.1, bias="none", task_type="CAUSAL_LM")
        # self.model from setUp is a base AutoModelForCausalLM
        peft_model_instance = get_peft_model(self.model, lora_config)

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = NashMDConfig(
                output_dir=tmp_dir,
                per_device_train_batch_size=1,  # Keep small for quick test
                max_steps=2,  # Few steps
                learning_rate=5.0e-7,
                eval_strategy="no",
                report_to="none",
                remove_unused_columns=False,  # Important for the dummy dataset
            )
            dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only")["train"]

            trainer = NashMDTrainer(
                model=peft_model_instance,  # Pass the already PEFT model
                ref_model=None,  # Implicit reference from peft_model_instance's base
                reward_model=self.reward_model,  # To trigger GeometricMixtureWrapper path
                args=training_args,
                processing_class=self.tokenizer,
                train_dataset=dummy_dataset,
                # peft_config is not passed, as model is already PEFT
            )

            trainer.train()

            self.assertIn("train_loss", trainer.state.log_history[-1])

    @parameterized.expand([("standard_prompt_only",), ("conversational_prompt_only",)])
    @require_llm_blender
    def test_nash_md_trainer_judge_training(self, config_name):
        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = NashMDConfig(
                output_dir=tmp_dir,
                per_device_train_batch_size=2,
                max_steps=3,
                remove_unused_columns=False,
                gradient_accumulation_steps=1,
                learning_rate=9e-1,
                eval_strategy="steps",
                report_to="none",
            )
            dummy_dataset = load_dataset("trl-internal-testing/zen", config_name)
            judge = RandomPairwiseJudge()

            trainer = NashMDTrainer(
                model=self.model,
                ref_model=self.ref_model,
                judge=judge,
                args=training_args,
                processing_class=self.tokenizer,
                train_dataset=dummy_dataset["train"],
                eval_dataset=dummy_dataset["test"],
            )

            trainer.train()

            # Check if training loss is available
            self.assertIn("train_loss", trainer.state.log_history[-1])