Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import tempfile | |
import unittest | |
import torch | |
import torch.nn.functional as F | |
from datasets import load_dataset | |
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig | |
from trl import GKDConfig, GKDTrainer | |
from trl.trainer.utils import SIMPLE_CHAT_TEMPLATE | |
class TestGKDTrainer(unittest.TestCase): | |
def setUpClass(cls): | |
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" | |
cls.tokenizer = AutoTokenizer.from_pretrained(model_id) | |
cls.tokenizer.pad_token = cls.tokenizer.eos_token | |
cls.model = AutoModelForCausalLM.from_pretrained(model_id) | |
cls.generation_config = GenerationConfig( | |
max_new_tokens=20, | |
num_return_sequences=1, | |
pad_token_id=cls.tokenizer.pad_token_id, | |
eos_token_id=cls.tokenizer.eos_token_id, | |
) | |
def test_generate_on_policy_outputs_deterministic(self): | |
prompts = ["Hello, how are you?", "What's the weather like today?"] | |
tokenized_prompts = self.tokenizer(prompts, return_tensors="pt", padding=True) | |
inputs = { | |
"prompts": tokenized_prompts["input_ids"], | |
"prompt_attention_mask": tokenized_prompts["attention_mask"], | |
} | |
# Set temperature to 0 for deterministic output | |
deterministic_generation_config = GenerationConfig( | |
max_new_tokens=30, | |
num_return_sequences=1, | |
pad_token_id=self.tokenizer.pad_token_id, | |
eos_token_id=self.tokenizer.eos_token_id, | |
temperature=0.0, | |
) | |
outputs = GKDTrainer.generate_on_policy_outputs( | |
self.model, inputs, deterministic_generation_config, self.tokenizer.pad_token_id | |
) | |
new_input_ids, new_attention_mask, new_labels = outputs | |
# Decode the generated outputs | |
generated_texts = self.tokenizer.batch_decode(new_input_ids, skip_special_tokens=True) | |
# Check if the generated texts start with the original prompts | |
for prompt, generated_text in zip(prompts, generated_texts): | |
self.assertTrue( | |
generated_text.startswith(prompt), | |
f"Generated text '{generated_text}' does not start with prompt '{prompt}'", | |
) | |
# Run the generation twice and check if the outputs are identical | |
outputs2 = GKDTrainer.generate_on_policy_outputs( | |
self.model, inputs, deterministic_generation_config, self.tokenizer.pad_token_id | |
) | |
new_input_ids2, new_attention_mask2, new_labels2 = outputs2 | |
# Check if the two generations are identical | |
self.assertTrue(torch.all(new_input_ids.eq(new_input_ids2)), "Deterministic generations are not identical") | |
self.assertTrue( | |
torch.all(new_attention_mask.eq(new_attention_mask2)), | |
"Attention masks for deterministic generations are not identical", | |
) | |
self.assertTrue( | |
torch.all(new_labels.eq(new_labels2)), | |
"Labels for deterministic generations are not identical", | |
) | |
def test_generate_on_policy_outputs(self): | |
prompts = ["Hello, how are you?", "What's the weather like today?"] | |
tokenized_prompts = self.tokenizer(prompts, return_tensors="pt", padding=True) | |
inputs = { | |
"prompts": tokenized_prompts["input_ids"], | |
"attention_mask": tokenized_prompts["attention_mask"], | |
} | |
outputs = GKDTrainer.generate_on_policy_outputs( | |
self.model, inputs, self.generation_config, self.tokenizer.pad_token_id | |
) | |
# Check that outputs is a tuple of three tensors | |
self.assertIsInstance(outputs, tuple) | |
self.assertEqual(len(outputs), 3) | |
new_input_ids, new_attention_mask, new_labels = outputs | |
# Check shapes | |
batch_size = len(prompts) | |
self.assertEqual(new_input_ids.shape[0], batch_size) | |
self.assertEqual(new_attention_mask.shape[0], batch_size) | |
self.assertEqual(new_labels.shape[0], batch_size) | |
# Check types | |
self.assertIsInstance(new_input_ids, torch.Tensor) | |
self.assertIsInstance(new_attention_mask, torch.Tensor) | |
self.assertIsInstance(new_labels, torch.Tensor) | |
# Check that new_input_ids and new_attention_mask have the same shape | |
self.assertEqual(new_input_ids.shape, new_attention_mask.shape) | |
self.assertEqual(new_labels.shape, new_attention_mask.shape) | |
class TestGeneralizedJSDLoss(unittest.TestCase): | |
def setUp(self): | |
self.batch_size = 2 | |
self.seq_length = 3 | |
self.vocab_size = 5 | |
self.student_logits = torch.randn(self.batch_size, self.seq_length, self.vocab_size) | |
self.teacher_logits = torch.randn(self.batch_size, self.seq_length, self.vocab_size) | |
def test_uniform_distribution(self): | |
logits = torch.ones(1, 1, self.vocab_size) | |
loss = GKDTrainer.generalized_jsd_loss(logits, logits) | |
self.assertAlmostEqual(loss.item(), 0, places=5) | |
def test_generalized_jsd_loss_edge_cases(self): | |
# Setup | |
student_logits = torch.log(torch.tensor([[0.1, 0.9]])).unsqueeze(0) | |
teacher_logits = torch.log(torch.tensor([[0.9, 0.1]])).unsqueeze(0) | |
# Case 1: beta = 1 (should be equivalent to KL(student || teacher)) | |
loss_beta_1 = GKDTrainer.generalized_jsd_loss(student_logits, teacher_logits, beta=1) | |
expected_loss_beta_1 = F.kl_div( | |
F.log_softmax(teacher_logits, dim=-1), F.softmax(student_logits, dim=-1), reduction="batchmean" | |
) | |
self.assertAlmostEqual(loss_beta_1.item(), expected_loss_beta_1.item(), places=5) | |
# Case 2: beta = 0 (should be equivalent to KL(teacher || student)) | |
loss_beta_0 = GKDTrainer.generalized_jsd_loss(student_logits, teacher_logits, beta=0) | |
expected_loss_beta_0 = F.kl_div( | |
F.log_softmax(student_logits, dim=-1), F.softmax(teacher_logits, dim=-1), reduction="batchmean" | |
) | |
self.assertAlmostEqual(loss_beta_0.item(), expected_loss_beta_0.item(), places=5) | |
def test_output_shape(self): | |
loss = GKDTrainer.generalized_jsd_loss(self.student_logits, self.teacher_logits) | |
self.assertTrue(torch.is_tensor(loss)) | |
self.assertEqual(loss.shape, torch.Size([])) | |
def test_beta_values(self): | |
loss_beta_0 = GKDTrainer.generalized_jsd_loss(self.student_logits, self.teacher_logits, beta=0) | |
loss_beta_1 = GKDTrainer.generalized_jsd_loss(self.student_logits, self.teacher_logits, beta=1) | |
self.assertNotEqual(loss_beta_0, loss_beta_1) | |
def test_temperature_scaling(self): | |
loss_temp_1 = GKDTrainer.generalized_jsd_loss(self.student_logits, self.teacher_logits, temperature=1) | |
loss_temp_2 = GKDTrainer.generalized_jsd_loss(self.student_logits, self.teacher_logits, temperature=2) | |
self.assertNotEqual(loss_temp_1, loss_temp_2) | |
def test_reduction_methods(self): | |
loss_batchmean = GKDTrainer.generalized_jsd_loss( | |
self.student_logits, self.teacher_logits, reduction="batchmean" | |
) | |
loss_sum = GKDTrainer.generalized_jsd_loss(self.student_logits, self.teacher_logits, reduction="sum") | |
loss_mean = GKDTrainer.generalized_jsd_loss(self.student_logits, self.teacher_logits, reduction="mean") | |
loss_none = GKDTrainer.generalized_jsd_loss(self.student_logits, self.teacher_logits, reduction="none") | |
self.assertEqual(loss_batchmean.shape, torch.Size([])) | |
self.assertEqual(loss_sum.shape, torch.Size([])) | |
self.assertEqual(loss_mean.shape, torch.Size([])) | |
self.assertEqual(loss_none.shape, self.student_logits.shape) | |
def test_symmetry(self): | |
student_teacher = GKDTrainer.generalized_jsd_loss(self.student_logits, self.teacher_logits, beta=0.1) | |
teacher_student = GKDTrainer.generalized_jsd_loss(self.teacher_logits, self.student_logits, beta=0.1) | |
self.assertNotEqual(student_teacher, teacher_student) | |
student_teacher = GKDTrainer.generalized_jsd_loss(self.student_logits, self.teacher_logits, beta=0.5) | |
teacher_student = GKDTrainer.generalized_jsd_loss(self.teacher_logits, self.student_logits, beta=0.5) | |
self.assertEqual(student_teacher, teacher_student) | |
def test_zero_loss_for_identical_inputs(self): | |
identical_logits = torch.randn(self.batch_size, self.seq_length, self.vocab_size) | |
loss = GKDTrainer.generalized_jsd_loss(identical_logits, identical_logits) | |
self.assertAlmostEqual(loss.item(), 0, places=6) | |
class GKDTrainerTester(unittest.TestCase): | |
def setUp(self): | |
self.model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" | |
self.model = AutoModelForCausalLM.from_pretrained(self.model_id) | |
self.teacher_model = AutoModelForCausalLM.from_pretrained(self.model_id) | |
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id) | |
self.tokenizer.pad_token = self.tokenizer.eos_token | |
# Ensure the tokenizer has a chat template | |
if not hasattr(self.tokenizer, "chat_template") or self.tokenizer.chat_template is None: | |
self.tokenizer.chat_template = SIMPLE_CHAT_TEMPLATE | |
def test_gkd_trainer(self): | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = GKDConfig( | |
output_dir=tmp_dir, | |
dataloader_drop_last=True, | |
eval_strategy="steps", | |
max_steps=4, | |
eval_steps=2, | |
save_steps=2, | |
per_device_train_batch_size=2, | |
per_device_eval_batch_size=2, | |
report_to="none", | |
) | |
dummy_dataset = load_dataset("trl-internal-testing/zen", "conversational_language_modeling") | |
trainer = GKDTrainer( | |
model=self.model_id, | |
teacher_model=self.model_id, | |
args=training_args, | |
train_dataset=dummy_dataset["train"], | |
eval_dataset=dummy_dataset["test"], | |
processing_class=self.tokenizer, | |
) | |
trainer.train() | |
self.assertIsNotNone(trainer.state.log_history[(-1)]["train_loss"]) | |
self.assertIsNotNone(trainer.state.log_history[0]["eval_loss"]) | |
self.assertIn("model.safetensors", os.listdir(tmp_dir + "/checkpoint-2")) | |
def test_generation_config_init(self): | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = GKDConfig(output_dir=tmp_dir) | |
dummy_dataset = load_dataset("trl-internal-testing/zen", "conversational_language_modeling") | |
trainer = GKDTrainer( | |
model=self.model_id, | |
teacher_model=self.model_id, | |
args=training_args, | |
train_dataset=dummy_dataset["train"], | |
eval_dataset=dummy_dataset["test"], | |
processing_class=self.tokenizer, | |
) | |
self.assertEqual(trainer.generation_config.pad_token_id, self.tokenizer.eos_token_id) | |
self.assertEqual(trainer.generation_config.eos_token_id, self.model.generation_config.eos_token_id) | |
self.assertEqual(trainer.generation_config.max_new_tokens, training_args.max_new_tokens) | |
self.assertEqual(trainer.generation_config.temperature, training_args.temperature) | |
self.assertEqual(trainer.generation_config.top_k, 0) | |