File size: 12,040 Bytes
2f5127c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import tempfile
import unittest

import torch
import torch.nn.functional as F
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig

from trl import GKDConfig, GKDTrainer
from trl.trainer.utils import SIMPLE_CHAT_TEMPLATE


class TestGKDTrainer(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
        cls.tokenizer = AutoTokenizer.from_pretrained(model_id)
        cls.tokenizer.pad_token = cls.tokenizer.eos_token
        cls.model = AutoModelForCausalLM.from_pretrained(model_id)
        cls.generation_config = GenerationConfig(
            max_new_tokens=20,
            num_return_sequences=1,
            pad_token_id=cls.tokenizer.pad_token_id,
            eos_token_id=cls.tokenizer.eos_token_id,
        )

    def test_generate_on_policy_outputs_deterministic(self):
        prompts = ["Hello, how are you?", "What's the weather like today?"]
        tokenized_prompts = self.tokenizer(prompts, return_tensors="pt", padding=True)

        inputs = {
            "prompts": tokenized_prompts["input_ids"],
            "prompt_attention_mask": tokenized_prompts["attention_mask"],
        }

        # Set temperature to 0 for deterministic output
        deterministic_generation_config = GenerationConfig(
            max_new_tokens=30,
            num_return_sequences=1,
            pad_token_id=self.tokenizer.pad_token_id,
            eos_token_id=self.tokenizer.eos_token_id,
            temperature=0.0,
        )

        outputs = GKDTrainer.generate_on_policy_outputs(
            self.model, inputs, deterministic_generation_config, self.tokenizer.pad_token_id
        )

        new_input_ids, new_attention_mask, new_labels = outputs

        # Decode the generated outputs
        generated_texts = self.tokenizer.batch_decode(new_input_ids, skip_special_tokens=True)

        # Check if the generated texts start with the original prompts
        for prompt, generated_text in zip(prompts, generated_texts):
            self.assertTrue(
                generated_text.startswith(prompt),
                f"Generated text '{generated_text}' does not start with prompt '{prompt}'",
            )

        # Run the generation twice and check if the outputs are identical
        outputs2 = GKDTrainer.generate_on_policy_outputs(
            self.model, inputs, deterministic_generation_config, self.tokenizer.pad_token_id
        )

        new_input_ids2, new_attention_mask2, new_labels2 = outputs2

        # Check if the two generations are identical
        self.assertTrue(torch.all(new_input_ids.eq(new_input_ids2)), "Deterministic generations are not identical")
        self.assertTrue(
            torch.all(new_attention_mask.eq(new_attention_mask2)),
            "Attention masks for deterministic generations are not identical",
        )
        self.assertTrue(
            torch.all(new_labels.eq(new_labels2)),
            "Labels for deterministic generations are not identical",
        )

    def test_generate_on_policy_outputs(self):
        prompts = ["Hello, how are you?", "What's the weather like today?"]
        tokenized_prompts = self.tokenizer(prompts, return_tensors="pt", padding=True)

        inputs = {
            "prompts": tokenized_prompts["input_ids"],
            "attention_mask": tokenized_prompts["attention_mask"],
        }

        outputs = GKDTrainer.generate_on_policy_outputs(
            self.model, inputs, self.generation_config, self.tokenizer.pad_token_id
        )

        # Check that outputs is a tuple of three tensors
        self.assertIsInstance(outputs, tuple)
        self.assertEqual(len(outputs), 3)

        new_input_ids, new_attention_mask, new_labels = outputs

        # Check shapes
        batch_size = len(prompts)
        self.assertEqual(new_input_ids.shape[0], batch_size)
        self.assertEqual(new_attention_mask.shape[0], batch_size)
        self.assertEqual(new_labels.shape[0], batch_size)

        # Check types
        self.assertIsInstance(new_input_ids, torch.Tensor)
        self.assertIsInstance(new_attention_mask, torch.Tensor)
        self.assertIsInstance(new_labels, torch.Tensor)

        # Check that new_input_ids and new_attention_mask have the same shape
        self.assertEqual(new_input_ids.shape, new_attention_mask.shape)
        self.assertEqual(new_labels.shape, new_attention_mask.shape)


class TestGeneralizedJSDLoss(unittest.TestCase):
    def setUp(self):
        self.batch_size = 2
        self.seq_length = 3
        self.vocab_size = 5
        self.student_logits = torch.randn(self.batch_size, self.seq_length, self.vocab_size)
        self.teacher_logits = torch.randn(self.batch_size, self.seq_length, self.vocab_size)

    def test_uniform_distribution(self):
        logits = torch.ones(1, 1, self.vocab_size)
        loss = GKDTrainer.generalized_jsd_loss(logits, logits)
        self.assertAlmostEqual(loss.item(), 0, places=5)

    def test_generalized_jsd_loss_edge_cases(self):
        # Setup
        student_logits = torch.log(torch.tensor([[0.1, 0.9]])).unsqueeze(0)
        teacher_logits = torch.log(torch.tensor([[0.9, 0.1]])).unsqueeze(0)

        # Case 1: beta = 1 (should be equivalent to KL(student || teacher))
        loss_beta_1 = GKDTrainer.generalized_jsd_loss(student_logits, teacher_logits, beta=1)
        expected_loss_beta_1 = F.kl_div(
            F.log_softmax(teacher_logits, dim=-1), F.softmax(student_logits, dim=-1), reduction="batchmean"
        )
        self.assertAlmostEqual(loss_beta_1.item(), expected_loss_beta_1.item(), places=5)

        # Case 2: beta = 0 (should be equivalent to KL(teacher || student))
        loss_beta_0 = GKDTrainer.generalized_jsd_loss(student_logits, teacher_logits, beta=0)
        expected_loss_beta_0 = F.kl_div(
            F.log_softmax(student_logits, dim=-1), F.softmax(teacher_logits, dim=-1), reduction="batchmean"
        )
        self.assertAlmostEqual(loss_beta_0.item(), expected_loss_beta_0.item(), places=5)

    def test_output_shape(self):
        loss = GKDTrainer.generalized_jsd_loss(self.student_logits, self.teacher_logits)
        self.assertTrue(torch.is_tensor(loss))
        self.assertEqual(loss.shape, torch.Size([]))

    def test_beta_values(self):
        loss_beta_0 = GKDTrainer.generalized_jsd_loss(self.student_logits, self.teacher_logits, beta=0)
        loss_beta_1 = GKDTrainer.generalized_jsd_loss(self.student_logits, self.teacher_logits, beta=1)
        self.assertNotEqual(loss_beta_0, loss_beta_1)

    def test_temperature_scaling(self):
        loss_temp_1 = GKDTrainer.generalized_jsd_loss(self.student_logits, self.teacher_logits, temperature=1)
        loss_temp_2 = GKDTrainer.generalized_jsd_loss(self.student_logits, self.teacher_logits, temperature=2)
        self.assertNotEqual(loss_temp_1, loss_temp_2)

    def test_reduction_methods(self):
        loss_batchmean = GKDTrainer.generalized_jsd_loss(
            self.student_logits, self.teacher_logits, reduction="batchmean"
        )
        loss_sum = GKDTrainer.generalized_jsd_loss(self.student_logits, self.teacher_logits, reduction="sum")
        loss_mean = GKDTrainer.generalized_jsd_loss(self.student_logits, self.teacher_logits, reduction="mean")
        loss_none = GKDTrainer.generalized_jsd_loss(self.student_logits, self.teacher_logits, reduction="none")

        self.assertEqual(loss_batchmean.shape, torch.Size([]))
        self.assertEqual(loss_sum.shape, torch.Size([]))
        self.assertEqual(loss_mean.shape, torch.Size([]))
        self.assertEqual(loss_none.shape, self.student_logits.shape)

    def test_symmetry(self):
        student_teacher = GKDTrainer.generalized_jsd_loss(self.student_logits, self.teacher_logits, beta=0.1)
        teacher_student = GKDTrainer.generalized_jsd_loss(self.teacher_logits, self.student_logits, beta=0.1)
        self.assertNotEqual(student_teacher, teacher_student)

        student_teacher = GKDTrainer.generalized_jsd_loss(self.student_logits, self.teacher_logits, beta=0.5)
        teacher_student = GKDTrainer.generalized_jsd_loss(self.teacher_logits, self.student_logits, beta=0.5)
        self.assertEqual(student_teacher, teacher_student)

    def test_zero_loss_for_identical_inputs(self):
        identical_logits = torch.randn(self.batch_size, self.seq_length, self.vocab_size)
        loss = GKDTrainer.generalized_jsd_loss(identical_logits, identical_logits)
        self.assertAlmostEqual(loss.item(), 0, places=6)


class GKDTrainerTester(unittest.TestCase):
    def setUp(self):
        self.model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
        self.model = AutoModelForCausalLM.from_pretrained(self.model_id)
        self.teacher_model = AutoModelForCausalLM.from_pretrained(self.model_id)
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
        self.tokenizer.pad_token = self.tokenizer.eos_token

        # Ensure the tokenizer has a chat template
        if not hasattr(self.tokenizer, "chat_template") or self.tokenizer.chat_template is None:
            self.tokenizer.chat_template = SIMPLE_CHAT_TEMPLATE

    def test_gkd_trainer(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GKDConfig(
                output_dir=tmp_dir,
                dataloader_drop_last=True,
                eval_strategy="steps",
                max_steps=4,
                eval_steps=2,
                save_steps=2,
                per_device_train_batch_size=2,
                per_device_eval_batch_size=2,
                report_to="none",
            )
            dummy_dataset = load_dataset("trl-internal-testing/zen", "conversational_language_modeling")

            trainer = GKDTrainer(
                model=self.model_id,
                teacher_model=self.model_id,
                args=training_args,
                train_dataset=dummy_dataset["train"],
                eval_dataset=dummy_dataset["test"],
                processing_class=self.tokenizer,
            )

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[(-1)]["train_loss"])
            self.assertIsNotNone(trainer.state.log_history[0]["eval_loss"])
            self.assertIn("model.safetensors", os.listdir(tmp_dir + "/checkpoint-2"))

    def test_generation_config_init(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = GKDConfig(output_dir=tmp_dir)
            dummy_dataset = load_dataset("trl-internal-testing/zen", "conversational_language_modeling")

            trainer = GKDTrainer(
                model=self.model_id,
                teacher_model=self.model_id,
                args=training_args,
                train_dataset=dummy_dataset["train"],
                eval_dataset=dummy_dataset["test"],
                processing_class=self.tokenizer,
            )

            self.assertEqual(trainer.generation_config.pad_token_id, self.tokenizer.eos_token_id)
            self.assertEqual(trainer.generation_config.eos_token_id, self.model.generation_config.eos_token_id)
            self.assertEqual(trainer.generation_config.max_new_tokens, training_args.max_new_tokens)
            self.assertEqual(trainer.generation_config.temperature, training_args.temperature)
            self.assertEqual(trainer.generation_config.top_k, 0)