Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
pip install pillow | |
# Tested on 8x H100 GPUs | |
accelerate launch | |
--config_file=examples/accelerate_configs/deepspeed_zero3.yaml \ | |
sft_vlm_smol_vlm.py \ | |
--dataset_name HuggingFaceH4/llava-instruct-mix-vsft \ | |
--model_name_or_path HuggingFaceTB/SmolVLM-Instruct \ | |
--per_device_train_batch_size 1 \ | |
--gradient_accumulation_steps 1 \ | |
--output_dir sft-smol-vlm-hf \ | |
--bf16 \ | |
--torch_dtype bfloat16 \ | |
--gradient_checkpointing \ | |
--use_peft \ | |
--lora_target_modules down_proj, o_proj, k_proj, q_proj, gate_proj, up_proj, v_proj | |
For LLaVA-NeXT, use: (requires transformers>=4.45) | |
--model_name_or_path llava-hf/llava-v1.6-mistral-7b-hf | |
For meta-llama/Llama-3.2-11B-Vision-Instruct, use: (requires transformers>=4.45.1) | |
--model_name_or_path meta-llama/Llama-3.2-11B-Vision-Instruct | |
""" | |
import torch | |
from datasets import load_dataset | |
from transformers import ( | |
AutoModelForVision2Seq, | |
AutoProcessor, | |
Idefics3ForConditionalGeneration, | |
LlavaForConditionalGeneration, | |
) | |
from trl import ( | |
ModelConfig, | |
ScriptArguments, | |
SFTConfig, | |
SFTTrainer, | |
TrlParser, | |
get_kbit_device_map, | |
get_peft_config, | |
get_quantization_config, | |
) | |
if __name__ == "__main__": | |
parser = TrlParser((ScriptArguments, SFTConfig, ModelConfig)) | |
script_args, training_args, model_args = parser.parse_args_and_config() | |
training_args.gradient_checkpointing_kwargs = dict(use_reentrant=False) | |
training_args.remove_unused_columns = False | |
training_args.dataset_kwargs = {"skip_prepare_dataset": True} | |
################ | |
# Model, Tokenizer & Processor | |
################ | |
torch_dtype = ( | |
model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype) | |
) | |
quantization_config = get_quantization_config(model_args) | |
model_kwargs = dict( | |
revision=model_args.model_revision, | |
attn_implementation=model_args.attn_implementation, | |
torch_dtype=torch_dtype, | |
device_map=get_kbit_device_map() if quantization_config is not None else None, | |
quantization_config=quantization_config, | |
) | |
processor = AutoProcessor.from_pretrained( | |
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code | |
) | |
model = AutoModelForVision2Seq.from_pretrained( | |
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, **model_kwargs | |
) | |
################ | |
# Create a data collator to encode text and image pairs | |
################ | |
def collate_fn(examples): | |
# Get the texts and images, and apply the chat template | |
texts = [processor.apply_chat_template(example["messages"], tokenize=False) for example in examples] | |
images = [example["images"] for example in examples] | |
if isinstance(model, LlavaForConditionalGeneration): | |
# LLava1.5 does not support multiple images | |
images = [image[0] for image in images] | |
# Tokenize the texts and process the images | |
batch = processor(text=texts, images=images, return_tensors="pt", padding=True) | |
# The labels are the input_ids, and we mask the padding tokens in the loss computation | |
labels = batch["input_ids"].clone() | |
labels[labels == processor.tokenizer.pad_token_id] = -100 # | |
# Ignore the image token index in the loss computation (model specific) | |
if isinstance(model, Idefics3ForConditionalGeneration): | |
image_token_id = processor.tokenizer.additional_special_tokens_ids[ | |
processor.tokenizer.additional_special_tokens.index("<image>") | |
] | |
else: | |
image_token_id = processor.tokenizer.convert_tokens_to_ids(processor.image_token) | |
labels[labels == image_token_id] = -100 | |
batch["labels"] = labels | |
return batch | |
################ | |
# Dataset | |
################ | |
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config) | |
################ | |
# Training | |
################ | |
trainer = SFTTrainer( | |
model=model, | |
args=training_args, | |
data_collator=collate_fn, | |
train_dataset=dataset[script_args.dataset_train_split], | |
eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None, | |
processing_class=processor.tokenizer, | |
peft_config=get_peft_config(model_args), | |
) | |
trainer.train() | |
# Save and push to hub | |
trainer.save_model(training_args.output_dir) | |
if training_args.push_to_hub: | |
trainer.push_to_hub(dataset_name=script_args.dataset_name) | |
if trainer.accelerator.is_main_process: | |
processor.push_to_hub(training_args.hub_model_id) | |