File size: 5,381 Bytes
2f5127c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
pip install pillow

# Tested on 8x H100 GPUs
accelerate launch
    --config_file=examples/accelerate_configs/deepspeed_zero3.yaml \
    sft_vlm_smol_vlm.py \
    --dataset_name HuggingFaceH4/llava-instruct-mix-vsft \
    --model_name_or_path HuggingFaceTB/SmolVLM-Instruct \
    --per_device_train_batch_size 1 \
    --gradient_accumulation_steps 1 \
    --output_dir sft-smol-vlm-hf \
    --bf16 \
    --torch_dtype bfloat16 \
    --gradient_checkpointing \
    --use_peft \
    --lora_target_modules down_proj, o_proj, k_proj, q_proj, gate_proj, up_proj, v_proj

For LLaVA-NeXT, use: (requires transformers>=4.45)
    --model_name_or_path llava-hf/llava-v1.6-mistral-7b-hf

For meta-llama/Llama-3.2-11B-Vision-Instruct, use: (requires transformers>=4.45.1)
    --model_name_or_path meta-llama/Llama-3.2-11B-Vision-Instruct
"""

import torch
from datasets import load_dataset
from transformers import (
    AutoModelForVision2Seq,
    AutoProcessor,
    Idefics3ForConditionalGeneration,
    LlavaForConditionalGeneration,
)

from trl import (
    ModelConfig,
    ScriptArguments,
    SFTConfig,
    SFTTrainer,
    TrlParser,
    get_kbit_device_map,
    get_peft_config,
    get_quantization_config,
)


if __name__ == "__main__":
    parser = TrlParser((ScriptArguments, SFTConfig, ModelConfig))
    script_args, training_args, model_args = parser.parse_args_and_config()
    training_args.gradient_checkpointing_kwargs = dict(use_reentrant=False)
    training_args.remove_unused_columns = False
    training_args.dataset_kwargs = {"skip_prepare_dataset": True}

    ################
    # Model, Tokenizer & Processor
    ################
    torch_dtype = (
        model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype)
    )
    quantization_config = get_quantization_config(model_args)
    model_kwargs = dict(
        revision=model_args.model_revision,
        attn_implementation=model_args.attn_implementation,
        torch_dtype=torch_dtype,
        device_map=get_kbit_device_map() if quantization_config is not None else None,
        quantization_config=quantization_config,
    )
    processor = AutoProcessor.from_pretrained(
        model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
    )

    model = AutoModelForVision2Seq.from_pretrained(
        model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, **model_kwargs
    )

    ################
    # Create a data collator to encode text and image pairs
    ################
    def collate_fn(examples):
        # Get the texts and images, and apply the chat template
        texts = [processor.apply_chat_template(example["messages"], tokenize=False) for example in examples]
        images = [example["images"] for example in examples]
        if isinstance(model, LlavaForConditionalGeneration):
            # LLava1.5 does not support multiple images
            images = [image[0] for image in images]

        # Tokenize the texts and process the images
        batch = processor(text=texts, images=images, return_tensors="pt", padding=True)

        # The labels are the input_ids, and we mask the padding tokens in the loss computation
        labels = batch["input_ids"].clone()
        labels[labels == processor.tokenizer.pad_token_id] = -100  #
        # Ignore the image token index in the loss computation (model specific)
        if isinstance(model, Idefics3ForConditionalGeneration):
            image_token_id = processor.tokenizer.additional_special_tokens_ids[
                processor.tokenizer.additional_special_tokens.index("<image>")
            ]
        else:
            image_token_id = processor.tokenizer.convert_tokens_to_ids(processor.image_token)
        labels[labels == image_token_id] = -100
        batch["labels"] = labels

        return batch

    ################
    # Dataset
    ################
    dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config)

    ################
    # Training
    ################
    trainer = SFTTrainer(
        model=model,
        args=training_args,
        data_collator=collate_fn,
        train_dataset=dataset[script_args.dataset_train_split],
        eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None,
        processing_class=processor.tokenizer,
        peft_config=get_peft_config(model_args),
    )

    trainer.train()

    # Save and push to hub
    trainer.save_model(training_args.output_dir)
    if training_args.push_to_hub:
        trainer.push_to_hub(dataset_name=script_args.dataset_name)
        if trainer.accelerator.is_main_process:
            processor.push_to_hub(training_args.hub_model_id)