Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Full training: | |
python examples/scripts/prm.py \ | |
--model_name_or_path Qwen/Qwen2-0.5B-Instruct \ | |
--dataset_name trl-lib/prm800k \ | |
--output_dir Qwen2-0.5B-Reward \ | |
--per_device_train_batch_size 8 \ | |
--num_train_epochs 1 \ | |
--gradient_checkpointing True \ | |
--learning_rate 1.0e-5 \ | |
--logging_steps 25 \ | |
--eval_strategy steps \ | |
--eval_steps 50 | |
LoRA: | |
python examples/scripts/prm.py \ | |
--model_name_or_path Qwen/Qwen2-0.5B-Instruct \ | |
--dataset_name trl-lib/prm800k \ | |
--output_dir Qwen2-0.5B-Reward-LoRA \ | |
--per_device_train_batch_size 8 \ | |
--num_train_epochs 1 \ | |
--gradient_checkpointing True \ | |
--learning_rate 1.0e-4 \ | |
--logging_steps 25 \ | |
--eval_strategy steps \ | |
--eval_steps 50 | |
--use_peft \ | |
--lora_r 32 \ | |
--lora_alpha 16 | |
""" | |
import warnings | |
import torch | |
from datasets import load_dataset | |
from transformers import AutoModelForTokenClassification, AutoTokenizer, HfArgumentParser | |
from trl import ( | |
ModelConfig, | |
PRMConfig, | |
PRMTrainer, | |
ScriptArguments, | |
get_kbit_device_map, | |
get_peft_config, | |
get_quantization_config, | |
) | |
if __name__ == "__main__": | |
parser = HfArgumentParser((ScriptArguments, PRMConfig, ModelConfig)) | |
script_args, training_args, model_config = parser.parse_args_into_dataclasses() | |
training_args.gradient_checkpointing_kwargs = dict(use_reentrant=False) | |
################ | |
# Model & Tokenizer | |
################ | |
torch_dtype = ( | |
model_config.torch_dtype | |
if model_config.torch_dtype in ["auto", None] | |
else getattr(torch, model_config.torch_dtype) | |
) | |
quantization_config = get_quantization_config(model_config) | |
model_kwargs = dict( | |
revision=model_config.model_revision, | |
device_map=get_kbit_device_map() if quantization_config is not None else None, | |
quantization_config=quantization_config, | |
use_cache=False if training_args.gradient_checkpointing else True, | |
) | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code, use_fast=True | |
) | |
model = AutoModelForTokenClassification.from_pretrained( | |
model_config.model_name_or_path, num_labels=2, trust_remote_code=model_config.trust_remote_code, **model_kwargs | |
) | |
# Align padding tokens between tokenizer and model | |
model.config.pad_token_id = tokenizer.pad_token_id | |
if model_config.use_peft and model_config.lora_task_type != "TOKEN_CLS": | |
warnings.warn( | |
"You are using a `task_type` that is different than `TOKEN_CLS` for PEFT. This will lead to silent bugs" | |
" Make sure to pass --lora_task_type TOKEN_CLS when using this script with PEFT.", | |
UserWarning, | |
) | |
############## | |
# Load dataset | |
############## | |
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config) | |
dataset = dataset.filter(lambda x: len(x["completions"]) > 0) | |
########## | |
# Training | |
########## | |
trainer = PRMTrainer( | |
model=model, | |
processing_class=tokenizer, | |
args=training_args, | |
train_dataset=dataset[script_args.dataset_train_split], | |
eval_dataset=dataset[script_args.dataset_test_split], | |
peft_config=get_peft_config(model_config), | |
) | |
trainer.train() | |
############################ | |
# Save model and push to Hub | |
############################ | |
trainer.save_model(training_args.output_dir) | |
metrics = trainer.evaluate() | |
trainer.log_metrics("eval", metrics) | |
trainer.save_metrics("eval", metrics) | |
# Save and push to hub | |
trainer.save_model(training_args.output_dir) | |
if training_args.push_to_hub: | |
trainer.push_to_hub(dataset_name=script_args.dataset_name) | |