File size: 4,411 Bytes
2f5127c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Full training:
python examples/scripts/prm.py \
    --model_name_or_path Qwen/Qwen2-0.5B-Instruct \
    --dataset_name trl-lib/prm800k \
    --output_dir Qwen2-0.5B-Reward \
    --per_device_train_batch_size 8 \
    --num_train_epochs 1 \
    --gradient_checkpointing True \
    --learning_rate 1.0e-5 \
    --logging_steps 25 \
    --eval_strategy steps \
    --eval_steps 50

LoRA:
python examples/scripts/prm.py \
    --model_name_or_path Qwen/Qwen2-0.5B-Instruct \
    --dataset_name trl-lib/prm800k \
    --output_dir Qwen2-0.5B-Reward-LoRA \
    --per_device_train_batch_size 8 \
    --num_train_epochs 1 \
    --gradient_checkpointing True \
    --learning_rate 1.0e-4 \
    --logging_steps 25 \
    --eval_strategy steps \
    --eval_steps 50
    --use_peft \
    --lora_r 32 \
    --lora_alpha 16
"""

import warnings

import torch
from datasets import load_dataset
from transformers import AutoModelForTokenClassification, AutoTokenizer, HfArgumentParser

from trl import (
    ModelConfig,
    PRMConfig,
    PRMTrainer,
    ScriptArguments,
    get_kbit_device_map,
    get_peft_config,
    get_quantization_config,
)


if __name__ == "__main__":
    parser = HfArgumentParser((ScriptArguments, PRMConfig, ModelConfig))
    script_args, training_args, model_config = parser.parse_args_into_dataclasses()
    training_args.gradient_checkpointing_kwargs = dict(use_reentrant=False)

    ################
    # Model & Tokenizer
    ################
    torch_dtype = (
        model_config.torch_dtype
        if model_config.torch_dtype in ["auto", None]
        else getattr(torch, model_config.torch_dtype)
    )
    quantization_config = get_quantization_config(model_config)
    model_kwargs = dict(
        revision=model_config.model_revision,
        device_map=get_kbit_device_map() if quantization_config is not None else None,
        quantization_config=quantization_config,
        use_cache=False if training_args.gradient_checkpointing else True,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code, use_fast=True
    )
    model = AutoModelForTokenClassification.from_pretrained(
        model_config.model_name_or_path, num_labels=2, trust_remote_code=model_config.trust_remote_code, **model_kwargs
    )
    # Align padding tokens between tokenizer and model
    model.config.pad_token_id = tokenizer.pad_token_id

    if model_config.use_peft and model_config.lora_task_type != "TOKEN_CLS":
        warnings.warn(
            "You are using a `task_type` that is different than `TOKEN_CLS` for PEFT. This will lead to silent bugs"
            " Make sure to pass --lora_task_type TOKEN_CLS when using this script with PEFT.",
            UserWarning,
        )

    ##############
    # Load dataset
    ##############
    dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config)

    dataset = dataset.filter(lambda x: len(x["completions"]) > 0)

    ##########
    # Training
    ##########
    trainer = PRMTrainer(
        model=model,
        processing_class=tokenizer,
        args=training_args,
        train_dataset=dataset[script_args.dataset_train_split],
        eval_dataset=dataset[script_args.dataset_test_split],
        peft_config=get_peft_config(model_config),
    )
    trainer.train()

    ############################
    # Save model and push to Hub
    ############################
    trainer.save_model(training_args.output_dir)
    metrics = trainer.evaluate()
    trainer.log_metrics("eval", metrics)
    trainer.save_metrics("eval", metrics)

    # Save and push to hub
    trainer.save_model(training_args.output_dir)
    if training_args.push_to_hub:
        trainer.push_to_hub(dataset_name=script_args.dataset_name)