Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
# Full training: | |
python examples/scripts/gkd.py \ | |
--model_name_or_path Qwen/Qwen2-0.5B-Instruct \ | |
--teacher_model_name_or_path Qwen/Qwen2-1.5B-Instruct \ | |
--dataset_name trl-lib/chatbot_arena_completions \ | |
--learning_rate 2e-5 \ | |
--per_device_train_batch_size 4 \ | |
--gradient_accumulation_steps 8 \ | |
--output_dir gkd-model \ | |
--logging_steps 10 \ | |
--num_train_epochs 1 \ | |
--push_to_hub \ | |
--gradient_checkpointing | |
# LoRA: | |
python examples/scripts/gkd.py \ | |
--model_name_or_path Qwen/Qwen2-0.5B-Instruct \ | |
--teacher_model_name_or_path Qwen/Qwen2-1.5B-Instruct \ | |
--dataset_name trl-lib/chatbot_arena_completions \ | |
--learning_rate 2e-4 \ | |
--per_device_train_batch_size 4 \ | |
--gradient_accumulation_steps 8 \ | |
--output_dir gkd-model \ | |
--logging_steps 10 \ | |
--num_train_epochs 1 \ | |
--push_to_hub \ | |
--gradient_checkpointing \ | |
--use_peft \ | |
--lora_r 64 \ | |
--lora_alpha 16 | |
""" | |
from datasets import load_dataset | |
from transformers import AutoTokenizer, GenerationConfig | |
from trl import ( | |
GKDConfig, | |
GKDTrainer, | |
LogCompletionsCallback, | |
ModelConfig, | |
ScriptArguments, | |
TrlParser, | |
get_kbit_device_map, | |
get_peft_config, | |
get_quantization_config, | |
) | |
if __name__ == "__main__": | |
parser = TrlParser((ScriptArguments, GKDConfig, ModelConfig)) | |
script_args, training_args, model_args = parser.parse_args_and_config() | |
################ | |
# Model & Tokenizer | |
################ | |
quantization_config = get_quantization_config(model_args) | |
model_kwargs = dict( | |
revision=model_args.model_revision, | |
trust_remote_code=model_args.trust_remote_code, | |
attn_implementation=model_args.attn_implementation, | |
torch_dtype=model_args.torch_dtype, | |
use_cache=False if training_args.gradient_checkpointing else True, | |
device_map=get_kbit_device_map() if quantization_config is not None else None, | |
quantization_config=quantization_config, | |
) | |
training_args.model_init_kwargs = model_kwargs | |
teacher_model_kwargs = dict( | |
revision=model_args.model_revision, | |
trust_remote_code=model_args.trust_remote_code, | |
attn_implementation=model_args.attn_implementation, | |
torch_dtype=model_args.torch_dtype, | |
use_cache=True, | |
device_map=get_kbit_device_map() if quantization_config is not None else None, | |
quantization_config=quantization_config, | |
) | |
training_args.teacher_model_init_kwargs = teacher_model_kwargs | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.model_name_or_path, | |
revision=model_args.model_revision, | |
trust_remote_code=model_args.trust_remote_code, | |
padding_side="left", | |
) | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
################ | |
# Dataset | |
################ | |
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config) | |
################ | |
# Training | |
################ | |
trainer = GKDTrainer( | |
model=model_args.model_name_or_path, | |
teacher_model=training_args.teacher_model_name_or_path, | |
args=training_args, | |
train_dataset=dataset[script_args.dataset_train_split], | |
eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None, | |
processing_class=tokenizer, | |
peft_config=get_peft_config(model_args), | |
) | |
if training_args.eval_strategy != "no": | |
generation_config = GenerationConfig( | |
max_new_tokens=training_args.max_new_tokens, do_sample=True, temperature=training_args.temperature | |
) | |
completions_callback = LogCompletionsCallback(trainer, generation_config, num_prompts=8) | |
trainer.add_callback(completions_callback) | |
trainer.train() | |
# Save and push to hub | |
trainer.save_model(training_args.output_dir) | |
if training_args.push_to_hub: | |
trainer.push_to_hub(dataset_name=script_args.dataset_name) | |