# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ # Full training: python examples/scripts/gkd.py \ --model_name_or_path Qwen/Qwen2-0.5B-Instruct \ --teacher_model_name_or_path Qwen/Qwen2-1.5B-Instruct \ --dataset_name trl-lib/chatbot_arena_completions \ --learning_rate 2e-5 \ --per_device_train_batch_size 4 \ --gradient_accumulation_steps 8 \ --output_dir gkd-model \ --logging_steps 10 \ --num_train_epochs 1 \ --push_to_hub \ --gradient_checkpointing # LoRA: python examples/scripts/gkd.py \ --model_name_or_path Qwen/Qwen2-0.5B-Instruct \ --teacher_model_name_or_path Qwen/Qwen2-1.5B-Instruct \ --dataset_name trl-lib/chatbot_arena_completions \ --learning_rate 2e-4 \ --per_device_train_batch_size 4 \ --gradient_accumulation_steps 8 \ --output_dir gkd-model \ --logging_steps 10 \ --num_train_epochs 1 \ --push_to_hub \ --gradient_checkpointing \ --use_peft \ --lora_r 64 \ --lora_alpha 16 """ from datasets import load_dataset from transformers import AutoTokenizer, GenerationConfig from trl import ( GKDConfig, GKDTrainer, LogCompletionsCallback, ModelConfig, ScriptArguments, TrlParser, get_kbit_device_map, get_peft_config, get_quantization_config, ) if __name__ == "__main__": parser = TrlParser((ScriptArguments, GKDConfig, ModelConfig)) script_args, training_args, model_args = parser.parse_args_and_config() ################ # Model & Tokenizer ################ quantization_config = get_quantization_config(model_args) model_kwargs = dict( revision=model_args.model_revision, trust_remote_code=model_args.trust_remote_code, attn_implementation=model_args.attn_implementation, torch_dtype=model_args.torch_dtype, use_cache=False if training_args.gradient_checkpointing else True, device_map=get_kbit_device_map() if quantization_config is not None else None, quantization_config=quantization_config, ) training_args.model_init_kwargs = model_kwargs teacher_model_kwargs = dict( revision=model_args.model_revision, trust_remote_code=model_args.trust_remote_code, attn_implementation=model_args.attn_implementation, torch_dtype=model_args.torch_dtype, use_cache=True, device_map=get_kbit_device_map() if quantization_config is not None else None, quantization_config=quantization_config, ) training_args.teacher_model_init_kwargs = teacher_model_kwargs tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, revision=model_args.model_revision, trust_remote_code=model_args.trust_remote_code, padding_side="left", ) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token ################ # Dataset ################ dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config) ################ # Training ################ trainer = GKDTrainer( model=model_args.model_name_or_path, teacher_model=training_args.teacher_model_name_or_path, args=training_args, train_dataset=dataset[script_args.dataset_train_split], eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None, processing_class=tokenizer, peft_config=get_peft_config(model_args), ) if training_args.eval_strategy != "no": generation_config = GenerationConfig( max_new_tokens=training_args.max_new_tokens, do_sample=True, temperature=training_args.temperature ) completions_callback = LogCompletionsCallback(trainer, generation_config, num_prompts=8) trainer.add_callback(completions_callback) trainer.train() # Save and push to hub trainer.save_model(training_args.output_dir) if training_args.push_to_hub: trainer.push_to_hub(dataset_name=script_args.dataset_name)