ivangabriele's picture
feat: initialize project
2f5127c verified
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Fine-Tune Llama2-7b on SE paired dataset
import os
from dataclasses import dataclass, field
from typing import Optional
import torch
from accelerate import Accelerator
from datasets import load_dataset
from peft import AutoPeftModelForCausalLM, LoraConfig
from tqdm import tqdm
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
HfArgumentParser,
is_torch_npu_available,
is_torch_xpu_available,
set_seed,
)
from trl import SFTConfig, SFTTrainer
from trl.trainer import ConstantLengthDataset
@dataclass
class ScriptArguments:
model_name: Optional[str] = field(default="meta-llama/Llama-2-7b-hf", metadata={"help": "the model name"})
dataset_name: Optional[str] = field(default="lvwerra/stack-exchange-paired", metadata={"help": "the dataset name"})
subset: Optional[str] = field(default="data/finetune", metadata={"help": "the subset to use"})
split: Optional[str] = field(default="train", metadata={"help": "the split to use"})
size_valid_set: Optional[int] = field(default=4000, metadata={"help": "the size of the validation set"})
streaming: Optional[bool] = field(default=True, metadata={"help": "whether to stream the dataset"})
shuffle_buffer: Optional[int] = field(default=5000, metadata={"help": "the shuffle buffer size"})
seq_length: Optional[int] = field(default=1024, metadata={"help": "the sequence length"})
num_workers: Optional[int] = field(default=4, metadata={"help": "the number of workers"})
use_bnb: Optional[bool] = field(default=True, metadata={"help": "whether to use BitsAndBytes"})
# LoraConfig
lora_alpha: Optional[float] = field(default=16, metadata={"help": "the lora alpha parameter"})
lora_dropout: Optional[float] = field(default=0.05, metadata={"help": "the lora dropout parameter"})
lora_r: Optional[int] = field(default=8, metadata={"help": "the lora r parameter"})
parser = HfArgumentParser((ScriptArguments, SFTConfig))
script_args, training_args = parser.parse_args_into_dataclasses()
peft_config = LoraConfig(
r=script_args.lora_r,
lora_alpha=script_args.lora_alpha,
lora_dropout=script_args.lora_dropout,
target_modules=["q_proj", "v_proj"],
bias="none",
task_type="CAUSAL_LM",
)
if training_args.group_by_length and training_args.packing:
raise ValueError("Cannot use both packing and group by length")
# `gradient_checkpointing` was True by default until `1f3314`, but it's actually not used.
# `gradient_checkpointing=True` will cause `Variable._execution_engine.run_backward`.
if training_args.gradient_checkpointing:
raise ValueError("gradient_checkpointing not supported")
set_seed(training_args.seed)
def chars_token_ratio(dataset, tokenizer, nb_examples=400):
"""
Estimate the average number of characters per token in the dataset.
"""
total_characters, total_tokens = 0, 0
for _, example in tqdm(zip(range(nb_examples), iter(dataset)), total=nb_examples):
text = prepare_sample_text(example)
total_characters += len(text)
if tokenizer.is_fast:
total_tokens += len(tokenizer(text).tokens())
else:
total_tokens += len(tokenizer.tokenize(text))
return total_characters / total_tokens
def print_trainable_parameters(model):
"""
Prints the number of trainable parameters in the model.
"""
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
all_param += param.numel()
if param.requires_grad:
trainable_params += param.numel()
print(
f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}"
)
def prepare_sample_text(example):
"""Prepare the text from a sample of the dataset."""
text = f"Question: {example['question']}\n\nAnswer: {example['response_j']}"
return text
def create_datasets(tokenizer, args, seed=None):
dataset = load_dataset(
args.dataset_name,
data_dir=args.subset,
split=args.split,
use_auth_token=True,
num_proc=args.num_workers if not args.streaming else None,
streaming=args.streaming,
)
if args.streaming:
print("Loading the dataset in streaming mode")
valid_data = dataset.take(args.size_valid_set)
train_data = dataset.skip(args.size_valid_set)
train_data = train_data.shuffle(buffer_size=args.shuffle_buffer, seed=seed)
else:
dataset = dataset.train_test_split(test_size=0.005, seed=seed)
train_data = dataset["train"]
valid_data = dataset["test"]
print(f"Size of the train set: {len(train_data)}. Size of the validation set: {len(valid_data)}")
chars_per_token = chars_token_ratio(train_data, tokenizer)
print(f"The character to token ratio of the dataset is: {chars_per_token:.2f}")
train_dataset = ConstantLengthDataset(
tokenizer,
train_data,
formatting_func=prepare_sample_text,
infinite=True,
seq_length=args.seq_length,
chars_per_token=chars_per_token,
)
valid_dataset = ConstantLengthDataset(
tokenizer,
valid_data,
formatting_func=prepare_sample_text,
infinite=False,
seq_length=args.seq_length,
chars_per_token=chars_per_token,
)
return train_dataset, valid_dataset
bnb_config = None
if script_args.use_bnb:
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
base_model = AutoModelForCausalLM.from_pretrained(
script_args.model_name,
quantization_config=bnb_config,
device_map={"": Accelerator().local_process_index},
trust_remote_code=True,
use_auth_token=True,
)
base_model.config.use_cache = False
tokenizer = AutoTokenizer.from_pretrained(script_args.model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right" # Fix weird overflow issue with fp16 training
train_dataset, eval_dataset = create_datasets(tokenizer, script_args, seed=training_args.seed)
trainer = SFTTrainer(
model=base_model,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
peft_config=peft_config,
max_length=None,
formatting_func=prepare_sample_text,
processing_class=tokenizer,
args=training_args,
)
trainer.train()
trainer.save_model(training_args.output_dir)
output_dir = os.path.join(training_args.output_dir, "final_checkpoint")
trainer.model.save_pretrained(output_dir)
# Free memory for merging weights
del base_model
if is_torch_xpu_available():
torch.xpu.empty_cache()
elif is_torch_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
model = AutoPeftModelForCausalLM.from_pretrained(output_dir, device_map="auto", torch_dtype=torch.bfloat16)
model = model.merge_and_unload()
output_merged_dir = os.path.join(training_args.output_dir, "final_merged_checkpoint")
model.save_pretrained(output_merged_dir, safe_serialization=True)