File size: 7,725 Bytes
2f5127c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Fine-Tune Llama2-7b on SE paired dataset
import os
from dataclasses import dataclass, field
from typing import Optional

import torch
from accelerate import Accelerator
from datasets import load_dataset
from peft import AutoPeftModelForCausalLM, LoraConfig
from tqdm import tqdm
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    HfArgumentParser,
    is_torch_npu_available,
    is_torch_xpu_available,
    set_seed,
)

from trl import SFTConfig, SFTTrainer
from trl.trainer import ConstantLengthDataset


@dataclass
class ScriptArguments:
    model_name: Optional[str] = field(default="meta-llama/Llama-2-7b-hf", metadata={"help": "the model name"})
    dataset_name: Optional[str] = field(default="lvwerra/stack-exchange-paired", metadata={"help": "the dataset name"})
    subset: Optional[str] = field(default="data/finetune", metadata={"help": "the subset to use"})
    split: Optional[str] = field(default="train", metadata={"help": "the split to use"})
    size_valid_set: Optional[int] = field(default=4000, metadata={"help": "the size of the validation set"})
    streaming: Optional[bool] = field(default=True, metadata={"help": "whether to stream the dataset"})
    shuffle_buffer: Optional[int] = field(default=5000, metadata={"help": "the shuffle buffer size"})
    seq_length: Optional[int] = field(default=1024, metadata={"help": "the sequence length"})
    num_workers: Optional[int] = field(default=4, metadata={"help": "the number of workers"})
    use_bnb: Optional[bool] = field(default=True, metadata={"help": "whether to use BitsAndBytes"})

    # LoraConfig
    lora_alpha: Optional[float] = field(default=16, metadata={"help": "the lora alpha parameter"})
    lora_dropout: Optional[float] = field(default=0.05, metadata={"help": "the lora dropout parameter"})
    lora_r: Optional[int] = field(default=8, metadata={"help": "the lora r parameter"})


parser = HfArgumentParser((ScriptArguments, SFTConfig))
script_args, training_args = parser.parse_args_into_dataclasses()
peft_config = LoraConfig(
    r=script_args.lora_r,
    lora_alpha=script_args.lora_alpha,
    lora_dropout=script_args.lora_dropout,
    target_modules=["q_proj", "v_proj"],
    bias="none",
    task_type="CAUSAL_LM",
)

if training_args.group_by_length and training_args.packing:
    raise ValueError("Cannot use both packing and group by length")

# `gradient_checkpointing` was True by default until `1f3314`, but it's actually not used.
# `gradient_checkpointing=True` will cause `Variable._execution_engine.run_backward`.
if training_args.gradient_checkpointing:
    raise ValueError("gradient_checkpointing not supported")

set_seed(training_args.seed)


def chars_token_ratio(dataset, tokenizer, nb_examples=400):
    """
    Estimate the average number of characters per token in the dataset.
    """
    total_characters, total_tokens = 0, 0
    for _, example in tqdm(zip(range(nb_examples), iter(dataset)), total=nb_examples):
        text = prepare_sample_text(example)
        total_characters += len(text)
        if tokenizer.is_fast:
            total_tokens += len(tokenizer(text).tokens())
        else:
            total_tokens += len(tokenizer.tokenize(text))

    return total_characters / total_tokens


def print_trainable_parameters(model):
    """
    Prints the number of trainable parameters in the model.
    """
    trainable_params = 0
    all_param = 0
    for _, param in model.named_parameters():
        all_param += param.numel()
        if param.requires_grad:
            trainable_params += param.numel()
    print(
        f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}"
    )


def prepare_sample_text(example):
    """Prepare the text from a sample of the dataset."""
    text = f"Question: {example['question']}\n\nAnswer: {example['response_j']}"
    return text


def create_datasets(tokenizer, args, seed=None):
    dataset = load_dataset(
        args.dataset_name,
        data_dir=args.subset,
        split=args.split,
        use_auth_token=True,
        num_proc=args.num_workers if not args.streaming else None,
        streaming=args.streaming,
    )
    if args.streaming:
        print("Loading the dataset in streaming mode")
        valid_data = dataset.take(args.size_valid_set)
        train_data = dataset.skip(args.size_valid_set)
        train_data = train_data.shuffle(buffer_size=args.shuffle_buffer, seed=seed)
    else:
        dataset = dataset.train_test_split(test_size=0.005, seed=seed)
        train_data = dataset["train"]
        valid_data = dataset["test"]
        print(f"Size of the train set: {len(train_data)}. Size of the validation set: {len(valid_data)}")

    chars_per_token = chars_token_ratio(train_data, tokenizer)
    print(f"The character to token ratio of the dataset is: {chars_per_token:.2f}")

    train_dataset = ConstantLengthDataset(
        tokenizer,
        train_data,
        formatting_func=prepare_sample_text,
        infinite=True,
        seq_length=args.seq_length,
        chars_per_token=chars_per_token,
    )
    valid_dataset = ConstantLengthDataset(
        tokenizer,
        valid_data,
        formatting_func=prepare_sample_text,
        infinite=False,
        seq_length=args.seq_length,
        chars_per_token=chars_per_token,
    )
    return train_dataset, valid_dataset


bnb_config = None
if script_args.use_bnb:
    bnb_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_compute_dtype=torch.bfloat16,
    )

base_model = AutoModelForCausalLM.from_pretrained(
    script_args.model_name,
    quantization_config=bnb_config,
    device_map={"": Accelerator().local_process_index},
    trust_remote_code=True,
    use_auth_token=True,
)
base_model.config.use_cache = False


tokenizer = AutoTokenizer.from_pretrained(script_args.model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"  # Fix weird overflow issue with fp16 training

train_dataset, eval_dataset = create_datasets(tokenizer, script_args, seed=training_args.seed)

trainer = SFTTrainer(
    model=base_model,
    train_dataset=train_dataset,
    eval_dataset=eval_dataset,
    peft_config=peft_config,
    max_length=None,
    formatting_func=prepare_sample_text,
    processing_class=tokenizer,
    args=training_args,
)
trainer.train()
trainer.save_model(training_args.output_dir)

output_dir = os.path.join(training_args.output_dir, "final_checkpoint")
trainer.model.save_pretrained(output_dir)

# Free memory for merging weights
del base_model
if is_torch_xpu_available():
    torch.xpu.empty_cache()
elif is_torch_npu_available():
    torch.npu.empty_cache()
else:
    torch.cuda.empty_cache()

model = AutoPeftModelForCausalLM.from_pretrained(output_dir, device_map="auto", torch_dtype=torch.bfloat16)
model = model.merge_and_unload()

output_merged_dir = os.path.join(training_args.output_dir, "final_merged_checkpoint")
model.save_pretrained(output_merged_dir, safe_serialization=True)