Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass, field | |
from typing import Optional | |
import torch | |
from peft import PeftConfig, PeftModel | |
from transformers import AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer, HfArgumentParser | |
class ScriptArguments: | |
""" | |
The input names representing the Adapter and Base model fine-tuned with PEFT, and the output name representing the | |
merged model. | |
""" | |
adapter_model_name: Optional[str] = field(default=None, metadata={"help": "the adapter name"}) | |
base_model_name: Optional[str] = field(default=None, metadata={"help": "the base model name"}) | |
output_name: Optional[str] = field(default=None, metadata={"help": "the merged model name"}) | |
parser = HfArgumentParser(ScriptArguments) | |
script_args = parser.parse_args_into_dataclasses()[0] | |
assert script_args.adapter_model_name is not None, "please provide the name of the Adapter you would like to merge" | |
assert script_args.base_model_name is not None, "please provide the name of the Base model" | |
assert script_args.output_name is not None, "please provide the output name of the merged model" | |
peft_config = PeftConfig.from_pretrained(script_args.adapter_model_name) | |
if peft_config.task_type == "SEQ_CLS": | |
# The sequence classification task is used for the reward model in PPO | |
model = AutoModelForSequenceClassification.from_pretrained( | |
script_args.base_model_name, num_labels=1, torch_dtype=torch.bfloat16 | |
) | |
else: | |
model = AutoModelForCausalLM.from_pretrained( | |
script_args.base_model_name, return_dict=True, torch_dtype=torch.bfloat16 | |
) | |
tokenizer = AutoTokenizer.from_pretrained(script_args.base_model_name) | |
# Load the PEFT model | |
model = PeftModel.from_pretrained(model, script_args.adapter_model_name) | |
model.eval() | |
model = model.merge_and_unload() | |
model.save_pretrained(f"{script_args.output_name}") | |
tokenizer.save_pretrained(f"{script_args.output_name}") | |
model.push_to_hub(f"{script_args.output_name}", use_temp_dir=False) | |