File size: 2,610 Bytes
2f5127c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass, field
from typing import Optional

import torch
from peft import PeftConfig, PeftModel
from transformers import AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer, HfArgumentParser


@dataclass
class ScriptArguments:
    """
    The input names representing the Adapter and Base model fine-tuned with PEFT, and the output name representing the
    merged model.
    """

    adapter_model_name: Optional[str] = field(default=None, metadata={"help": "the adapter name"})
    base_model_name: Optional[str] = field(default=None, metadata={"help": "the base model name"})
    output_name: Optional[str] = field(default=None, metadata={"help": "the merged model name"})


parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses()[0]
assert script_args.adapter_model_name is not None, "please provide the name of the Adapter you would like to merge"
assert script_args.base_model_name is not None, "please provide the name of the Base model"
assert script_args.output_name is not None, "please provide the output name of the merged model"

peft_config = PeftConfig.from_pretrained(script_args.adapter_model_name)
if peft_config.task_type == "SEQ_CLS":
    # The sequence classification task is used for the reward model in PPO
    model = AutoModelForSequenceClassification.from_pretrained(
        script_args.base_model_name, num_labels=1, torch_dtype=torch.bfloat16
    )
else:
    model = AutoModelForCausalLM.from_pretrained(
        script_args.base_model_name, return_dict=True, torch_dtype=torch.bfloat16
    )

tokenizer = AutoTokenizer.from_pretrained(script_args.base_model_name)

# Load the PEFT model
model = PeftModel.from_pretrained(model, script_args.adapter_model_name)
model.eval()

model = model.merge_and_unload()

model.save_pretrained(f"{script_args.output_name}")
tokenizer.save_pretrained(f"{script_args.output_name}")
model.push_to_hub(f"{script_args.output_name}", use_temp_dir=False)