Spaces:
Paused
Paused
File size: 2,610 Bytes
2f5127c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from typing import Optional
import torch
from peft import PeftConfig, PeftModel
from transformers import AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer, HfArgumentParser
@dataclass
class ScriptArguments:
"""
The input names representing the Adapter and Base model fine-tuned with PEFT, and the output name representing the
merged model.
"""
adapter_model_name: Optional[str] = field(default=None, metadata={"help": "the adapter name"})
base_model_name: Optional[str] = field(default=None, metadata={"help": "the base model name"})
output_name: Optional[str] = field(default=None, metadata={"help": "the merged model name"})
parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses()[0]
assert script_args.adapter_model_name is not None, "please provide the name of the Adapter you would like to merge"
assert script_args.base_model_name is not None, "please provide the name of the Base model"
assert script_args.output_name is not None, "please provide the output name of the merged model"
peft_config = PeftConfig.from_pretrained(script_args.adapter_model_name)
if peft_config.task_type == "SEQ_CLS":
# The sequence classification task is used for the reward model in PPO
model = AutoModelForSequenceClassification.from_pretrained(
script_args.base_model_name, num_labels=1, torch_dtype=torch.bfloat16
)
else:
model = AutoModelForCausalLM.from_pretrained(
script_args.base_model_name, return_dict=True, torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(script_args.base_model_name)
# Load the PEFT model
model = PeftModel.from_pretrained(model, script_args.adapter_model_name)
model.eval()
model = model.merge_and_unload()
model.save_pretrained(f"{script_args.output_name}")
tokenizer.save_pretrained(f"{script_args.output_name}")
model.push_to_hub(f"{script_args.output_name}", use_temp_dir=False)
|