Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass, field | |
from typing import Optional | |
from datasets import load_dataset | |
from huggingface_hub import ModelCard | |
from transformers import HfArgumentParser | |
class ScriptArguments: | |
r""" | |
Arguments for the script. | |
Args: | |
push_to_hub (`bool`, *optional*, defaults to `False`): | |
Whether to push the dataset to the Hugging Face Hub. | |
repo_id (`str`, *optional*, defaults to `"trl-lib/tldr-preference"`): | |
Hugging Face repository ID to push the dataset to. | |
dataset_num_proc (`int` or `None`, *optional*, defaults to `None`): | |
Number of workers to use for dataset processing. | |
""" | |
push_to_hub: bool = field( | |
default=False, | |
metadata={"help": "Whether to push the dataset to the Hugging Face Hub."}, | |
) | |
repo_id: str = field( | |
default="trl-lib/tldr-preference", | |
metadata={"help": "Hugging Face repository ID to push the dataset to."}, | |
) | |
dataset_num_proc: Optional[int] = field( | |
default=None, | |
metadata={"help": "Number of workers to use for dataset processing."}, | |
) | |
def to_preference(example): | |
info = example["info"] | |
if example["batch"] in ["batch0_cnndm", "cnndm0", "cnndm2"]: # CNN Daily Mail batches | |
article = info["article"].replace("\n\n", "\n") | |
prompt = f"TITLE: {info['title']}\n\n{article}\n\nTL;DR:" | |
elif example["batch"] in [f"batch{i}" for i in range(3, 23)] + ["edit_b2_eval_test"]: # Reddit batches | |
post = info["post"].replace("\n\n", "\n") | |
prompt = f"SUBREDDIT: r/{info['subreddit']}\n\nTITLE: {info['title']}\n\nPOST: {post}\n\nTL;DR:" | |
else: | |
raise ValueError(f"Unknown batch: {example['batch']}") | |
chosen_idx = example["choice"] | |
rejected_idx = 1 - chosen_idx | |
chosen = example["summaries"][chosen_idx]["text"] | |
rejected = example["summaries"][rejected_idx]["text"] | |
return {"prompt": prompt, "chosen": chosen, "rejected": rejected} | |
model_card = ModelCard(""" | |
--- | |
tags: [trl] | |
--- | |
# TL;DR Dataset for Preference Learning | |
## Summary | |
The TL;DR dataset is a processed version of Reddit posts, specifically curated to train models using the [TRL library](https://github.com/huggingface/trl) for preference learning and Reinforcement Learning from Human Feedback (RLHF) tasks. It leverages the common practice on Reddit where users append "TL;DR" (Too Long; Didn't Read) summaries to lengthy posts, providing a rich source of paired text data for training models to understand and generate concise summaries. | |
## Data Structure | |
- **Format**: [Standard](https://huggingface.co/docs/trl/main/dataset_formats#standard) | |
- **Type**: [Preference](https://huggingface.co/docs/trl/main/dataset_formats#preference) | |
Columns: | |
- `"prompt"`: The unabridged Reddit post. | |
- `"chosen"`: The concise "TL;DR" summary appended by the author. | |
- `"rejected"`: An alternative summary or response that was not selected. | |
This structure enables models to learn the relationship between detailed content and its abbreviated form, enhancing their summarization capabilities. | |
## Generation script | |
The script used to generate this dataset can be found [here](https://github.com/huggingface/trl/blob/main/examples/datasets/tldr_preference.py). | |
""") | |
if __name__ == "__main__": | |
parser = HfArgumentParser(ScriptArguments) | |
script_args = parser.parse_args_into_dataclasses()[0] | |
dataset = load_dataset("openai/summarize_from_feedback", "comparisons") | |
dataset = dataset.map( | |
to_preference, | |
num_proc=script_args.dataset_num_proc, | |
remove_columns=["info", "summaries", "choice", "worker", "batch", "split", "extra"], | |
) | |
if script_args.push_to_hub: | |
dataset.push_to_hub(script_args.repo_id) | |
model_card.push_to_hub(script_args.repo_id, repo_type="dataset") | |