# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass, field from typing import Optional from datasets import load_dataset from huggingface_hub import ModelCard from transformers import HfArgumentParser @dataclass class ScriptArguments: r""" Arguments for the script. Args: push_to_hub (`bool`, *optional*, defaults to `False`): Whether to push the dataset to the Hugging Face Hub. repo_id (`str`, *optional*, defaults to `"trl-lib/tldr-preference"`): Hugging Face repository ID to push the dataset to. dataset_num_proc (`int` or `None`, *optional*, defaults to `None`): Number of workers to use for dataset processing. """ push_to_hub: bool = field( default=False, metadata={"help": "Whether to push the dataset to the Hugging Face Hub."}, ) repo_id: str = field( default="trl-lib/tldr-preference", metadata={"help": "Hugging Face repository ID to push the dataset to."}, ) dataset_num_proc: Optional[int] = field( default=None, metadata={"help": "Number of workers to use for dataset processing."}, ) def to_preference(example): info = example["info"] if example["batch"] in ["batch0_cnndm", "cnndm0", "cnndm2"]: # CNN Daily Mail batches article = info["article"].replace("\n\n", "\n") prompt = f"TITLE: {info['title']}\n\n{article}\n\nTL;DR:" elif example["batch"] in [f"batch{i}" for i in range(3, 23)] + ["edit_b2_eval_test"]: # Reddit batches post = info["post"].replace("\n\n", "\n") prompt = f"SUBREDDIT: r/{info['subreddit']}\n\nTITLE: {info['title']}\n\nPOST: {post}\n\nTL;DR:" else: raise ValueError(f"Unknown batch: {example['batch']}") chosen_idx = example["choice"] rejected_idx = 1 - chosen_idx chosen = example["summaries"][chosen_idx]["text"] rejected = example["summaries"][rejected_idx]["text"] return {"prompt": prompt, "chosen": chosen, "rejected": rejected} model_card = ModelCard(""" --- tags: [trl] --- # TL;DR Dataset for Preference Learning ## Summary The TL;DR dataset is a processed version of Reddit posts, specifically curated to train models using the [TRL library](https://github.com/huggingface/trl) for preference learning and Reinforcement Learning from Human Feedback (RLHF) tasks. It leverages the common practice on Reddit where users append "TL;DR" (Too Long; Didn't Read) summaries to lengthy posts, providing a rich source of paired text data for training models to understand and generate concise summaries. ## Data Structure - **Format**: [Standard](https://huggingface.co/docs/trl/main/dataset_formats#standard) - **Type**: [Preference](https://huggingface.co/docs/trl/main/dataset_formats#preference) Columns: - `"prompt"`: The unabridged Reddit post. - `"chosen"`: The concise "TL;DR" summary appended by the author. - `"rejected"`: An alternative summary or response that was not selected. This structure enables models to learn the relationship between detailed content and its abbreviated form, enhancing their summarization capabilities. ## Generation script The script used to generate this dataset can be found [here](https://github.com/huggingface/trl/blob/main/examples/datasets/tldr_preference.py). """) if __name__ == "__main__": parser = HfArgumentParser(ScriptArguments) script_args = parser.parse_args_into_dataclasses()[0] dataset = load_dataset("openai/summarize_from_feedback", "comparisons") dataset = dataset.map( to_preference, num_proc=script_args.dataset_num_proc, remove_columns=["info", "summaries", "choice", "worker", "batch", "split", "extra"], ) if script_args.push_to_hub: dataset.push_to_hub(script_args.repo_id) model_card.push_to_hub(script_args.repo_id, repo_type="dataset")