File size: 12,513 Bytes
fb59a4d
 
 
 
 
 
57966f8
fb59a4d
 
 
 
 
 
 
57966f8
e8513b3
fb59a4d
 
 
 
 
 
 
 
57966f8
fb59a4d
 
 
 
 
 
 
 
 
57966f8
 
fb59a4d
 
 
 
 
 
 
 
57966f8
 
fb59a4d
 
 
 
 
 
 
 
57966f8
 
fb59a4d
3c834a4
57966f8
 
fb59a4d
 
57966f8
fb59a4d
3c834a4
57966f8
 
fb59a4d
 
57966f8
fb59a4d
57966f8
fb59a4d
57966f8
 
 
 
 
fb59a4d
 
 
 
 
 
 
 
 
57966f8
fb59a4d
57966f8
fb59a4d
 
57966f8
fb59a4d
788d26b
57966f8
 
 
 
fb59a4d
 
3c834a4
2b82738
 
 
57966f8
fb59a4d
 
 
 
 
 
57966f8
fb59a4d
57966f8
2b82738
 
57966f8
fb59a4d
 
 
57966f8
fb59a4d
 
 
e8513b3
57966f8
fb59a4d
57966f8
 
2db9a09
57966f8
 
 
 
 
fb59a4d
57966f8
fb59a4d
 
 
 
57966f8
 
fb59a4d
3c834a4
 
fb59a4d
 
 
 
 
57966f8
 
 
fb59a4d
3c834a4
fb59a4d
 
 
 
 
 
 
 
 
 
 
 
 
 
3c834a4
57966f8
fb59a4d
 
 
 
 
 
57966f8
fb59a4d
 
 
 
 
 
 
 
 
3c834a4
fb59a4d
 
 
 
 
 
 
 
57966f8
fb59a4d
 
 
 
 
 
 
 
 
 
 
 
57966f8
fb59a4d
57966f8
fb59a4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57966f8
fb59a4d
 
 
57966f8
fb59a4d
57966f8
 
fb59a4d
57966f8
fb59a4d
57966f8
fb59a4d
3c834a4
788d26b
 
fb59a4d
e8513b3
788d26b
 
 
fb59a4d
 
 
788d26b
3c834a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb59a4d
 
 
3c834a4
 
 
 
 
 
 
 
fb59a4d
3c834a4
 
 
fb59a4d
 
57966f8
fb59a4d
3c834a4
 
 
 
 
 
 
 
57966f8
 
 
 
 
 
 
3c834a4
57966f8
 
 
 
 
 
 
 
 
 
 
fb59a4d
57966f8
 
 
 
3c834a4
 
57966f8
fb59a4d
3c834a4
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
import os
import gc
import json
import logging
import tempfile
from datetime import datetime, timedelta
from pathlib import Path
from dataclasses import dataclass
import streamlit as st
import whisper
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import numpy as np
import librosa
import humanize

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

# Constants
MAX_FILE_SIZE = 25 * 1024 * 1024  # 25MB
MAX_AUDIO_DURATION = 600  # 10 minutes
MIN_SAMPLE_RATE = 16000  # 16kHz
SUPPORTED_FORMATS = {'.wav', '.mp3', '.m4a'}

# Model configuration
MODEL_CONFIG = {
    "path": "gpt2",
    "description": "Efficient open-source model for analysis",
    "memory_required": "8GB"
}

@dataclass
class VCStyle:
    name: str
    note_format: dict
    key_interests: list
    custom_sections: list
    insight_preferences: dict

class AudioValidator:
    @staticmethod
    def validate_audio_file(file):
        stats = {
            'file_size': None,
            'duration': None,
            'sample_rate': None,
            'format': None
        }
        
        try:
            if file is None:
                return False, "No file was uploaded.", stats

            # Check file size
            file_size = len(file.getvalue())
            stats['file_size'] = humanize.naturalsize(file_size)
            
            if file_size > MAX_FILE_SIZE:
                return False, f"File size ({stats['file_size']}) exceeds limit", stats

            # Check file extension
            file_extension = Path(file.name).suffix.lower()
            stats['format'] = file_extension
            
            if file_extension not in SUPPORTED_FORMATS:
                return False, f"Unsupported format {file_extension}", stats

            # Create temporary file
            with tempfile.NamedTemporaryFile(delete=False, suffix=file_extension) as tmp_file:
                tmp_file.write(file.getvalue())
                tmp_file_path = tmp_file.name

            try:
                # Check audio properties
                y, sr = librosa.load(tmp_file_path, sr=None)
                duration = librosa.get_duration(y=y, sr=sr)
                
                stats.update({
                    'duration': str(timedelta(seconds=int(duration))),
                    'sample_rate': f"{sr/1000:.1f}kHz"
                })

                if duration > MAX_AUDIO_DURATION:
                    return False, f"Duration ({stats['duration']}) exceeds limit", stats

                if sr < MIN_SAMPLE_RATE:
                    return False, f"Sample rate too low ({stats['sample_rate']})", stats

                return True, "Audio file is valid", stats

            finally:
                os.unlink(tmp_file_path)

        except Exception as e:
            logger.error(f"Validation error: {str(e)}")
            return False, str(e), stats

class AudioProcessor:
    def __init__(self, model):
        self.model = model
        self.validator = AudioValidator()

    def process_audio(self, audio_file):
        stats = {
            'status': 'processing',
            'start_time': datetime.now(),
            'file_info': None,
            'processing_time': None,
            'error': None
        }
        
        try:
            # Validate file
            is_valid, message, file_stats = self.validator.validate_audio_file(audio_file)
            stats['file_info'] = file_stats
            
            if not is_valid:
                stats['status'] = 'failed'
                stats['error'] = message
                return None, stats

            # Process audio
            with tempfile.NamedTemporaryFile(delete=False, suffix=file_stats['format']) as tmp_file:
                tmp_file.write(audio_file.getvalue())
                tmp_file_path = tmp_file.name

            try:
                result = self.model.transcribe(
                    tmp_file_path,
                    language="en",
                    task="transcribe",
                    fp16=torch.cuda.is_available()
                )
                
                stats['status'] = 'success'
                stats['processing_time'] = str(datetime.now() - stats['start_time'])
                return result["text"], stats

            finally:
                os.unlink(tmp_file_path)

        except Exception as e:
            logger.error(f"Processing error: {str(e)}")
            stats['status'] = 'failed'
            stats['error'] = str(e)
            return None, stats

        finally:
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
            gc.collect()

@st.cache_resource
def load_whisper():
    try:
        return whisper.load_model("base")
    except Exception as e:
        logger.error(f"Whisper model loading error: {str(e)}")
        return None

@st.cache_resource
def load_llm():
    try:
        tokenizer = AutoTokenizer.from_pretrained(
            MODEL_CONFIG["path"],
            trust_remote_code=True
        )
        
        model = AutoModelForCausalLM.from_pretrained(
            MODEL_CONFIG["path"],
            device_map="auto",
            torch_dtype=torch.float16,
            low_cpu_mem_usage=True
        )
        
        return pipeline(
            "text-generation",
            model=model,
            tokenizer=tokenizer,
            max_new_tokens=512,
            temperature=0.7,
            top_p=0.95,
            repetition_penalty=1.15,
            batch_size=1
        )
        
    except Exception as e:
        logger.error(f"LLM loading error: {str(e)}")
        return None

class ContentAnalyzer:
    def __init__(self, generator):
        self.generator = generator

    def analyze_text(self, text, vc_style):
        try:
            prompt = self._create_analysis_prompt(text, vc_style)
            response = self._generate_response(prompt)
            return self._parse_response(response)
        except Exception as e:
            logger.error(f"Analysis error: {str(e)}")
            return None

    def _create_analysis_prompt(self, text, vc_style):
        interests = ', '.join(vc_style.key_interests)
        return f"""Analyze this startup pitch focusing on {interests}:
        
        {text}
        
        Provide structured insights for:
        1. Key Points
        2. Metrics
        3. Risks
        4. Questions"""

    def _generate_response(self, prompt):
        try:
            response = self.generator(prompt)
            return response[0]['generated_text']
        except Exception as e:
            logger.error(f"Generation error: {str(e)}")
            return ""

    def _parse_response(self, response):
        try:
            sections = response.split('\n\n')
            parsed = {}
            current_section = "general"
            
            for section in sections:
                if section.strip().endswith(':'):
                    current_section = section.strip()[:-1].lower()
                    parsed[current_section] = []
                else:
                    if current_section in parsed:
                        parsed[current_section].append(section.strip())
                    else:
                        parsed[current_section] = [section.strip()]
                        
            return parsed
        except Exception as e:
            logger.error(f"Parsing error: {str(e)}")
            return {"error": "Failed to parse response"}

def setup_page():
    st.set_page_config(
        page_title="VC Call Assistant",
        page_icon="πŸŽ™οΈ",
        layout="wide",
    )

def show_file_uploader():
    st.markdown("""
    ### πŸ“ Upload Audio File
    
    **Supported formats:** WAV, MP3, M4A
    **Limits:** 25MB, 10 minutes, 16kHz min quality
    """)
    
    return st.file_uploader(
        "Choose an audio file",
        type=['wav', 'mp3', 'm4a']
    )

def show_processing_stats(stats):
    if not stats:
        return

    st.markdown("### πŸ“Š Processing Information")
    
    cols = st.columns(3)
    
    if stats.get('file_info'):
        with cols[0]:
            st.metric("File Size", stats['file_info'].get('file_size', 'N/A'))
            st.metric("Format", stats['file_info'].get('format', 'N/A'))
            
        with cols[1]:
            st.metric("Duration", stats['file_info'].get('duration', 'N/A'))
            st.metric("Sample Rate", stats['file_info'].get('sample_rate', 'N/A'))
            
        with cols[2]:
            status = stats.get('status', 'unknown')
            if status == 'success':
                st.success(f"Processed in {stats.get('processing_time', 'N/A')}")
            elif status == 'failed':
                st.error(f"Failed: {stats.get('error', 'Unknown error')}")
            else:
                st.info("Processing...")

def main():
    try:
        setup_page()
        
        with st.sidebar:
            st.title("VC Assistant Settings")
            
            st.info(f"""Using GPT2
            Memory: {MODEL_CONFIG['memory_required']}
            Info: {MODEL_CONFIG['description']}""")
            
            vc_name = st.text_input("Your Name")
            note_style = st.selectbox(
                "Note Style",
                ["Bullet Points", "Paragraphs", "Q&A"]
            )
            
            interests = st.multiselect(
                "Focus Areas",
                ["Product", "Market", "Team", "Financials", "Technology"],
                default=["Product", "Market"]
            )

        st.title("πŸŽ™οΈ VC Call Assistant")
        
        if not vc_name:
            st.warning("Please enter your name in the sidebar.")
            return

        with st.spinner("Loading models..."):
            whisper_model = load_whisper()
            llm = load_llm()
            
            if not whisper_model or not llm:
                st.error("Failed to initialize models. Please refresh the page.")
                return
            
            audio_processor = AudioProcessor(whisper_model)
            analyzer = ContentAnalyzer(llm)

        audio_file = show_file_uploader()
        
        if audio_file:
            with st.spinner("Processing audio..."):
                transcription, stats = audio_processor.process_audio(audio_file)
                show_processing_stats(stats)
                
                if transcription and stats['status'] == 'success':
                    col1, col2 = st.columns(2)
                    
                    with col1:
                        st.subheader("πŸ“ Transcript")
                        st.write(transcription)
                    
                    with col2:
                        st.subheader("πŸ” Analysis")
                        with st.spinner("Analyzing transcript..."):
                            vc_style = VCStyle(
                                name=vc_name,
                                note_format={"style": note_style},
                                key_interests=interests,
                                custom_sections=[],
                                insight_preferences={}
                            )
                            
                            analysis = analyzer.analyze_text(transcription, vc_style)
                            if analysis:
                                st.write(analysis)
                                
                                st.download_button(
                                    "πŸ“₯ Export Analysis",
                                    data=json.dumps({
                                        "timestamp": datetime.now().isoformat(),
                                        "transcription": transcription,
                                        "analysis": analysis,
                                        "processing_stats": stats
                                    }, indent=2),
                                    file_name=f"vc_analysis_{datetime.now():%Y%m%d_%H%M%S}.json",
                                    mime="application/json"
                                )

    except Exception as e:
        logger.error(f"Application error: {str(e)}")
        st.error("An error occurred. Please refresh the page and try again.")
        
    finally:
        gc.collect()
        if torch.cuda.is_available():
            torch.cuda.empty_cache()

if __name__ == "__main__":
    main()