Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +234 -243
- requirements.txt +0 -1
app.py
CHANGED
@@ -17,7 +17,7 @@ import logging
|
|
17 |
import json
|
18 |
import numpy as np
|
19 |
from dataclasses import dataclass, asdict
|
20 |
-
import
|
21 |
import threading
|
22 |
from collections import defaultdict
|
23 |
|
@@ -25,6 +25,20 @@ from collections import defaultdict
|
|
25 |
logging.basicConfig(level=logging.INFO)
|
26 |
logger = logging.getLogger(__name__)
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
@dataclass
|
29 |
class VCStyle:
|
30 |
"""Store VC's personal style preferences"""
|
@@ -44,280 +58,257 @@ class LiveCallContext:
|
|
44 |
questions_asked: List[str]
|
45 |
action_items: List[str]
|
46 |
|
47 |
-
class
|
48 |
-
"""
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
self.audio_buffer = queue.Queue()
|
54 |
-
self.transcript_buffer = queue.Queue()
|
55 |
-
self.context = defaultdict(list)
|
56 |
-
|
57 |
-
def process_audio_chunk(self, audio_chunk):
|
58 |
-
"""Process incoming audio chunk"""
|
59 |
try:
|
60 |
-
|
61 |
-
result = self.whisper_model.transcribe(audio_chunk)
|
62 |
-
return result["text"]
|
63 |
except Exception as e:
|
64 |
-
logger.error(f"
|
|
|
65 |
return None
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
Transcript: {transcript}
|
71 |
-
VC Interests: {vc_style.key_interests}
|
72 |
-
|
73 |
-
Provide insights in these areas:
|
74 |
-
1. Key Discussion Points
|
75 |
-
2. Potential Red Flags
|
76 |
-
3. Follow-up Questions
|
77 |
-
4. Market Insights
|
78 |
-
"""
|
79 |
-
|
80 |
try:
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
except Exception as e:
|
84 |
-
logger.error(f"
|
85 |
-
|
86 |
-
|
87 |
-
def update_context(self, transcript: str, insights: Dict[str, Any]):
|
88 |
-
"""Update call context with new information"""
|
89 |
-
self.context['transcripts'].append(transcript)
|
90 |
-
self.context['insights'].extend(insights.get('key_points', []))
|
91 |
-
self.context['questions'].extend(insights.get('questions', []))
|
92 |
|
93 |
-
class
|
94 |
-
"""
|
95 |
-
|
96 |
-
def __init__(self):
|
97 |
-
self.default_template = {
|
98 |
-
"product": {"problem": "", "solution": "", "other": ""},
|
99 |
-
"finances": {
|
100 |
-
"capital_raised": "", "cash_on_hand": "",
|
101 |
-
"monthly_burn": "", "gross_margin": "",
|
102 |
-
"deal_dynamics": ""
|
103 |
-
},
|
104 |
-
"market": {
|
105 |
-
"revenue": "", "yoy_growth": "", "tam": "",
|
106 |
-
"pricing": "", "acv_arpa": "", "churn": "",
|
107 |
-
"gtm": "", "competition": "", "other": ""
|
108 |
-
},
|
109 |
-
"concerns": {"risks": "", "mitigations": "", "other": ""},
|
110 |
-
"free_form": "",
|
111 |
-
"spv_actions": []
|
112 |
-
}
|
113 |
-
self.active_templates = {}
|
114 |
|
115 |
-
def
|
116 |
-
|
117 |
-
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
for key in section_path[:-1]:
|
132 |
-
target = target[key]
|
133 |
-
target[section_path[-1]] = content
|
134 |
-
except Exception as e:
|
135 |
-
logger.error(f"Error updating template: {e}")
|
136 |
|
137 |
-
class
|
138 |
-
"""
|
139 |
|
140 |
-
def __init__(self):
|
141 |
-
self.
|
142 |
|
143 |
-
def
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
)
|
152 |
-
self.styles[vc_name] = style
|
153 |
-
return style
|
154 |
-
|
155 |
-
def get_style(self, vc_name: str) -> Optional[VCStyle]:
|
156 |
-
"""Retrieve VC's style"""
|
157 |
-
return self.styles.get(vc_name)
|
158 |
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
def __init__(self, processor: RealTimeProcessor, template_manager: DynamicTemplate):
|
163 |
-
self.processor = processor
|
164 |
-
self.template_manager = template_manager
|
165 |
-
self.active_calls = {}
|
166 |
-
|
167 |
-
def start_call(self, meeting_id: str, vc_style: VCStyle) -> str:
|
168 |
-
"""Initialize a new call session"""
|
169 |
-
self.active_calls[meeting_id] = {
|
170 |
-
'context': LiveCallContext(
|
171 |
-
meeting_id=meeting_id,
|
172 |
-
participants=[],
|
173 |
-
topics=[],
|
174 |
-
key_points=[],
|
175 |
-
questions_asked=[],
|
176 |
-
action_items=[]
|
177 |
-
),
|
178 |
-
'template': self.template_manager.create_custom_template(vc_style),
|
179 |
-
'style': vc_style
|
180 |
-
}
|
181 |
-
return meeting_id
|
182 |
-
|
183 |
-
def process_call_segment(self, meeting_id: str, audio_chunk) -> Dict[str, Any]:
|
184 |
-
"""Process a segment of the call"""
|
185 |
-
if meeting_id not in self.active_calls:
|
186 |
-
raise ValueError("Invalid meeting ID")
|
187 |
-
|
188 |
-
# Process audio
|
189 |
-
transcript = self.processor.process_audio_chunk(audio_chunk)
|
190 |
-
if not transcript:
|
191 |
-
return {}
|
192 |
-
|
193 |
-
# Generate insights
|
194 |
-
call_data = self.active_calls[meeting_id]
|
195 |
-
insights = self.processor.generate_live_insights(
|
196 |
-
transcript,
|
197 |
-
call_data['style']
|
198 |
-
)
|
199 |
|
200 |
-
|
201 |
-
self.update_call_notes(meeting_id, transcript, insights)
|
202 |
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
def update_call_notes(self, meeting_id: str, transcript: str, insights: Dict[str, Any]):
|
210 |
-
"""Update call notes with new information"""
|
211 |
-
call_data = self.active_calls[meeting_id]
|
212 |
-
template = call_data['template']
|
213 |
-
|
214 |
-
# Update relevant sections based on insights
|
215 |
-
for key, value in insights.items():
|
216 |
-
if key in template:
|
217 |
-
if isinstance(template[key], dict):
|
218 |
-
template[key].update(value)
|
219 |
-
else:
|
220 |
-
template[key] = value
|
221 |
|
222 |
-
def
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
|
229 |
-
|
230 |
-
|
231 |
-
st.
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
note_format = st.multiselect(
|
237 |
-
"Preferred Note Format",
|
238 |
-
["Bullet Points", "Paragraphs", "Q&A Format"],
|
239 |
-
default=["Bullet Points"]
|
240 |
)
|
241 |
-
|
242 |
-
key_interests = st.multiselect(
|
243 |
-
"Key Interest Areas",
|
244 |
-
["Technical", "Financial", "Market", "Team", "Product"],
|
245 |
-
default=["Financial", "Market"]
|
246 |
-
)
|
247 |
-
|
248 |
-
custom_sections = st.multiselect(
|
249 |
-
"Custom Sections",
|
250 |
-
["Competition Deep Dive", "Technical Assessment", "Team Background"],
|
251 |
-
default=[]
|
252 |
-
)
|
253 |
-
|
254 |
-
# Main content area
|
255 |
-
st.title("VC Call Assistant")
|
256 |
|
257 |
-
|
258 |
-
|
|
|
|
|
|
|
|
|
|
|
259 |
|
260 |
-
|
261 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
|
263 |
-
#
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
|
|
|
|
|
|
274 |
)
|
275 |
|
276 |
-
|
277 |
-
|
278 |
-
"
|
279 |
-
|
280 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
|
282 |
-
if
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
results = live_call_manager.process_call_segment(
|
299 |
-
meeting_id,
|
300 |
-
uploaded_file
|
301 |
-
)
|
302 |
-
|
303 |
# Display results
|
304 |
col1, col2 = st.columns(2)
|
|
|
305 |
with col1:
|
306 |
-
st.subheader("
|
307 |
-
st.write(
|
308 |
-
|
309 |
-
st.subheader("Real-time Insights")
|
310 |
-
st.write(results.get('insights', {}))
|
311 |
|
312 |
with col2:
|
313 |
-
st.subheader("
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
|
322 |
if __name__ == "__main__":
|
323 |
main()
|
|
|
17 |
import json
|
18 |
import numpy as np
|
19 |
from dataclasses import dataclass, asdict
|
20 |
+
from queue import Queue
|
21 |
import threading
|
22 |
from collections import defaultdict
|
23 |
|
|
|
25 |
logging.basicConfig(level=logging.INFO)
|
26 |
logger = logging.getLogger(__name__)
|
27 |
|
28 |
+
# Constants for memory optimization
|
29 |
+
CHUNK_SIZE = 30 # seconds
|
30 |
+
MAX_AUDIO_LENGTH = 600 # seconds (10 minutes)
|
31 |
+
BATCH_SIZE = 8
|
32 |
+
|
33 |
+
# Model configurations with memory optimization
|
34 |
+
MODEL_CONFIGS = {
|
35 |
+
"Mistral-7B-Instruct": {
|
36 |
+
"path": "mistralai/Mistral-7B-Instruct-v0.1",
|
37 |
+
"description": "Efficient model for real-time analysis",
|
38 |
+
"memory_required": "16GB"
|
39 |
+
}
|
40 |
+
}
|
41 |
+
|
42 |
@dataclass
|
43 |
class VCStyle:
|
44 |
"""Store VC's personal style preferences"""
|
|
|
58 |
questions_asked: List[str]
|
59 |
action_items: List[str]
|
60 |
|
61 |
+
class ModelManager:
|
62 |
+
"""Handles model loading and resource management"""
|
63 |
|
64 |
+
@staticmethod
|
65 |
+
@st.cache_resource
|
66 |
+
def load_whisper():
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
try:
|
68 |
+
return whisper.load_model("base")
|
|
|
|
|
69 |
except Exception as e:
|
70 |
+
logger.error(f"Failed to load Whisper model: {e}")
|
71 |
+
st.error("Failed to load speech recognition model. Please refresh the page.")
|
72 |
return None
|
73 |
|
74 |
+
@staticmethod
|
75 |
+
@st.cache_resource
|
76 |
+
def load_llm(model_name: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
try:
|
78 |
+
config = MODEL_CONFIGS[model_name]
|
79 |
+
|
80 |
+
# Optimized quantization config
|
81 |
+
bnb_config = BitsAndBytesConfig(
|
82 |
+
load_in_4bit=True,
|
83 |
+
bnb_4bit_quant_type="nf4",
|
84 |
+
bnb_4bit_compute_dtype=torch.float16,
|
85 |
+
bnb_4bit_use_double_quant=True,
|
86 |
+
)
|
87 |
+
|
88 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
89 |
+
config["path"],
|
90 |
+
token=st.secrets.get("HF_TOKEN"),
|
91 |
+
trust_remote_code=True
|
92 |
+
)
|
93 |
+
|
94 |
+
model = AutoModelForCausalLM.from_pretrained(
|
95 |
+
config["path"],
|
96 |
+
token=st.secrets.get("HF_TOKEN"),
|
97 |
+
quantization_config=bnb_config,
|
98 |
+
device_map="auto",
|
99 |
+
torch_dtype=torch.float16,
|
100 |
+
low_cpu_mem_usage=True
|
101 |
+
)
|
102 |
+
|
103 |
+
pipe = pipeline(
|
104 |
+
"text-generation",
|
105 |
+
model=model,
|
106 |
+
tokenizer=tokenizer,
|
107 |
+
max_new_tokens=512, # Reduced for memory
|
108 |
+
temperature=0.7,
|
109 |
+
top_p=0.95,
|
110 |
+
repetition_penalty=1.15,
|
111 |
+
batch_size=BATCH_SIZE
|
112 |
+
)
|
113 |
+
|
114 |
+
return pipe
|
115 |
+
|
116 |
except Exception as e:
|
117 |
+
logger.error(f"Failed to load LLM {model_name}: {e}")
|
118 |
+
st.error("Failed to load language model. Please try again.")
|
119 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
+
class AudioProcessor:
|
122 |
+
"""Handles audio processing with memory optimization"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
+
def __init__(self, model):
|
125 |
+
self.model = model
|
126 |
+
self.chunk_queue = Queue()
|
127 |
|
128 |
+
def process_audio_chunk(self, audio_chunk) -> Optional[str]:
|
129 |
+
try:
|
130 |
+
# Clear GPU memory before processing
|
131 |
+
if torch.cuda.is_available():
|
132 |
+
torch.cuda.empty_cache()
|
133 |
+
|
134 |
+
result = self.model.transcribe(
|
135 |
+
audio_chunk,
|
136 |
+
language="en",
|
137 |
+
task="transcribe",
|
138 |
+
fp16=True # Use half precision
|
139 |
+
)
|
140 |
+
return result["text"]
|
141 |
|
142 |
+
except Exception as e:
|
143 |
+
logger.error(f"Error processing audio chunk: {e}")
|
144 |
+
return None
|
145 |
+
finally:
|
146 |
+
# Cleanup
|
147 |
+
gc.collect()
|
148 |
+
if torch.cuda.is_available():
|
149 |
+
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
+
class ContentAnalyzer:
|
152 |
+
"""Handles text analysis with optimized prompts"""
|
153 |
|
154 |
+
def __init__(self, generator):
|
155 |
+
self.generator = generator
|
156 |
|
157 |
+
def analyze_text(self, text: str, vc_style: VCStyle) -> Optional[Dict[str, Any]]:
|
158 |
+
try:
|
159 |
+
prompt = self._create_analysis_prompt(text, vc_style)
|
160 |
+
response = self._generate_response(prompt, max_length=512)
|
161 |
+
return self._parse_response(response)
|
162 |
+
except Exception as e:
|
163 |
+
logger.error(f"Analysis error: {e}")
|
164 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
+
def _create_analysis_prompt(self, text: str, vc_style: VCStyle) -> str:
|
167 |
+
return f"""Analyze this startup pitch focusing on {', '.join(vc_style.key_interests)}:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
169 |
+
{text}
|
|
|
170 |
|
171 |
+
Provide structured insights for:
|
172 |
+
1. Key Points
|
173 |
+
2. Metrics
|
174 |
+
3. Risks
|
175 |
+
4. Questions"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
+
def _generate_response(self, prompt: str, max_length: int) -> str:
|
178 |
+
try:
|
179 |
+
response = self.generator(
|
180 |
+
prompt,
|
181 |
+
max_new_tokens=max_length,
|
182 |
+
temperature=0.7,
|
183 |
+
top_p=0.95,
|
184 |
+
repetition_penalty=1.15
|
185 |
+
)
|
186 |
+
return response[0]['generated_text']
|
187 |
+
except Exception as e:
|
188 |
+
logger.error(f"Generation error: {e}")
|
189 |
+
return ""
|
190 |
+
|
191 |
+
class UIManager:
|
192 |
+
"""Manages Streamlit UI with performance optimization"""
|
193 |
|
194 |
+
@staticmethod
|
195 |
+
def setup_page():
|
196 |
+
st.set_page_config(
|
197 |
+
page_title="VC Call Assistant",
|
198 |
+
page_icon="ποΈ",
|
199 |
+
layout="wide",
|
200 |
+
initial_sidebar_state="expanded"
|
|
|
|
|
|
|
|
|
201 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
+
@staticmethod
|
204 |
+
def show_file_uploader() -> Optional[Any]:
|
205 |
+
return st.file_uploader(
|
206 |
+
"Upload Audio (Max 10 minutes)",
|
207 |
+
type=['wav', 'mp3', 'm4a'],
|
208 |
+
help="Supports WAV, MP3, M4A formats. Maximum duration: 10 minutes."
|
209 |
+
)
|
210 |
|
211 |
+
@staticmethod
|
212 |
+
def show_progress(text: str) -> Any:
|
213 |
+
return st.progress(0, text=text)
|
214 |
+
|
215 |
+
def main():
|
216 |
+
try:
|
217 |
+
# Initialize UI
|
218 |
+
UIManager.setup_page()
|
219 |
|
220 |
+
# Sidebar
|
221 |
+
with st.sidebar:
|
222 |
+
st.title("VC Assistant Settings")
|
223 |
+
model_name = "Mistral-7B-Instruct" # Fixed for stability
|
224 |
+
|
225 |
+
st.info(f"""Using {model_name}
|
226 |
+
Memory Usage: {MODEL_CONFIGS[model_name]['memory_required']}
|
227 |
+
Description: {MODEL_CONFIGS[model_name]['description']}""")
|
228 |
+
|
229 |
+
# VC Profile
|
230 |
+
vc_name = st.text_input("Your Name")
|
231 |
+
note_style = st.selectbox(
|
232 |
+
"Note Style",
|
233 |
+
["Bullet Points", "Paragraphs", "Q&A"]
|
234 |
)
|
235 |
|
236 |
+
interests = st.multiselect(
|
237 |
+
"Focus Areas",
|
238 |
+
["Product", "Market", "Team", "Financials", "Technology"],
|
239 |
+
default=["Product", "Market"]
|
240 |
)
|
241 |
+
|
242 |
+
# Main content
|
243 |
+
st.title("ποΈ VC Call Assistant")
|
244 |
+
|
245 |
+
if not vc_name:
|
246 |
+
st.warning("Please enter your name in the sidebar.")
|
247 |
+
return
|
248 |
+
|
249 |
+
# Initialize processors
|
250 |
+
with st.spinner("Loading models..."):
|
251 |
+
whisper_model = ModelManager.load_whisper()
|
252 |
+
llm = ModelManager.load_llm(model_name)
|
253 |
|
254 |
+
if not whisper_model or not llm:
|
255 |
+
st.error("Failed to initialize models. Please refresh the page.")
|
256 |
+
return
|
257 |
+
|
258 |
+
audio_processor = AudioProcessor(whisper_model)
|
259 |
+
analyzer = ContentAnalyzer(llm)
|
260 |
+
|
261 |
+
# File upload
|
262 |
+
audio_file = UIManager.show_file_uploader()
|
263 |
+
|
264 |
+
if audio_file:
|
265 |
+
# Process audio
|
266 |
+
with st.spinner("Processing audio..."):
|
267 |
+
transcription = audio_processor.process_audio_chunk(audio_file)
|
268 |
+
|
269 |
+
if transcription:
|
|
|
|
|
|
|
|
|
|
|
270 |
# Display results
|
271 |
col1, col2 = st.columns(2)
|
272 |
+
|
273 |
with col1:
|
274 |
+
st.subheader("π Transcript")
|
275 |
+
st.write(transcription)
|
|
|
|
|
|
|
276 |
|
277 |
with col2:
|
278 |
+
st.subheader("π Analysis")
|
279 |
+
vc_style = VCStyle(
|
280 |
+
name=vc_name,
|
281 |
+
note_format={"style": note_style},
|
282 |
+
key_interests=interests,
|
283 |
+
custom_sections=[],
|
284 |
+
insight_preferences={}
|
285 |
+
)
|
286 |
+
|
287 |
+
analysis = analyzer.analyze_text(transcription, vc_style)
|
288 |
+
if analysis:
|
289 |
+
st.write(analysis)
|
290 |
+
|
291 |
+
# Export option
|
292 |
+
st.download_button(
|
293 |
+
"π₯ Export Analysis",
|
294 |
+
data=json.dumps({
|
295 |
+
"timestamp": datetime.now().isoformat(),
|
296 |
+
"transcription": transcription,
|
297 |
+
"analysis": analysis
|
298 |
+
}, indent=2),
|
299 |
+
file_name=f"vc_analysis_{datetime.now():%Y%m%d_%H%M%S}.json",
|
300 |
+
mime="application/json"
|
301 |
+
)
|
302 |
+
|
303 |
+
except Exception as e:
|
304 |
+
logger.error(f"Application error: {e}")
|
305 |
+
st.error("An unexpected error occurred. Please refresh the page.")
|
306 |
+
|
307 |
+
finally:
|
308 |
+
# Cleanup
|
309 |
+
gc.collect()
|
310 |
+
if torch.cuda.is_available():
|
311 |
+
torch.cuda.empty_cache()
|
312 |
|
313 |
if __name__ == "__main__":
|
314 |
main()
|
requirements.txt
CHANGED
@@ -11,4 +11,3 @@ sentencepiece==0.1.99
|
|
11 |
huggingface-hub==0.19.4
|
12 |
python-dotenv==1.0.0
|
13 |
dataclasses-json==0.5.7
|
14 |
-
queue==1.0.2
|
|
|
11 |
huggingface-hub==0.19.4
|
12 |
python-dotenv==1.0.0
|
13 |
dataclasses-json==0.5.7
|
|