Ling-lite-1.5 / app_hf_model.py
雷娃
add API access to Ling service
f00ccef
# app.py
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
from threading import Thread
import gradio as gr
import re
import torch
# load model and tokenizer
model_name = "inclusionAI/Ling-lite-1.5"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto",
trust_remote_code=True
).eval()
# define chat function
def chat(user_input, max_new_tokens=2048):
# chat history
messages = [
{"role": "system", "content": "You are Ling, an assistant created by inclusionAI"},
{"role": "user", "content": user_input}
]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
# encode the input prompt
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
#create streamer
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
def generate():
model.generate(**inputs, max_new_tokens=max_new_tokens, streamer=streamer)
thread = Thread(target=generate)
thread.start()
start_idx = len("SYSTEM") + len(messages[0]["content"]) + len("HUMAN") + len(user_input) + len("ASSISTANT")
generated_text = ""
for new_text in streamer:
generated_text += new_text
yield generated_text[start_idx:]
thread.join()
# Create a custom layout using Blocks
with gr.Blocks(css="""
#markdown-output {
height: 300px;
overflow-y: auto;
border: 1px solid #ddd;
padding: 10px;
}
""") as demo:
gr.Markdown(
"## Ling-lite-1.5 AI Assistant\n"
"Based on [inclusionAI/Ling-lite-1.5](https://huggingface.co/inclusionAI/Ling-lite-1.5) "
)
with gr.Row():
max_tokens_slider = gr.Slider(minimum=128, maximum=2048, step=16, label="Generated length")
# output_box = gr.Textbox(lines=10, label="Response")
output_box = gr.Markdown(label="Response", elem_id="markdown-output")
input_box = gr.Textbox(lines=8, label="Input you question")
examples = gr.Examples(
examples=[
["Introducing the basic concepts of large language models"],
["How to solve long context dependencies in math problems?"]
],
inputs=input_box
)
interface = gr.Interface(
fn=chat,
inputs=[input_box, max_tokens_slider],
outputs=output_box,
live=False # disable auto-triggering on input change
)
# launch Gradio Service
demo.queue()
demo.launch()
# Construct Gradio Interface
#interface = gr.Interface(
# fn=chat,
# inputs=[
# gr.Textbox(lines=8, label="输入你的问题"),
# gr.Slider(minimum=100, maximum=102400, step=50, label="生成长度")
# ],
# outputs=[
# gr.Textbox(lines=8, label="模型回复")
# ],
# title="Ling-lite-1.5 AI助手",
# description="基于 [inclusionAI/Ling-lite-1.5](https://huggingface.co/inclusionAI/Ling-lite-1.5) 的对话式文本生成演示。",
# examples=[
# ["介绍大型语言模型的基本概念"],
# ["如何解决数学问题中的长上下文依赖?"]
# ]
#)
# launch Gradion Service
#interface.launch()