Spaces:
Running
Running
雷娃
commited on
Commit
·
f00ccef
1
Parent(s):
2ba773c
add API access to Ling service
Browse files- app.py +14 -28
- app_api.py +92 -0
- app_hf_model.py +106 -0
app.py
CHANGED
@@ -4,45 +4,31 @@ from threading import Thread
|
|
4 |
import gradio as gr
|
5 |
import re
|
6 |
import torch
|
|
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
model_name,
|
13 |
-
torch_dtype="auto",
|
14 |
-
device_map="auto",
|
15 |
-
trust_remote_code=True
|
16 |
-
).eval()
|
17 |
|
18 |
# define chat function
|
19 |
def chat(user_input, max_new_tokens=2048):
|
20 |
# chat history
|
21 |
-
|
22 |
{"role": "system", "content": "You are Ling, an assistant created by inclusionAI"},
|
23 |
{"role": "user", "content": user_input}
|
24 |
]
|
25 |
-
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
26 |
-
|
27 |
-
# encode the input prompt
|
28 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
|
39 |
-
start_idx = len("SYSTEM") + len(messages[0]["content"]) + len("HUMAN") + len(user_input) + len("ASSISTANT")
|
40 |
-
generated_text = ""
|
41 |
-
for new_text in streamer:
|
42 |
-
generated_text += new_text
|
43 |
-
yield generated_text[start_idx:]
|
44 |
|
45 |
-
thread.join()
|
46 |
|
47 |
# Create a custom layout using Blocks
|
48 |
with gr.Blocks(css="""
|
|
|
4 |
import gradio as gr
|
5 |
import re
|
6 |
import torch
|
7 |
+
from openai import OpenAI
|
8 |
|
9 |
+
client = OpenAI(
|
10 |
+
api_key="sk-420ab66020704eabbe37501ec39b7a2b",
|
11 |
+
base_url="https://bailingchat.alipay.com",
|
12 |
+
)
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
# define chat function
|
15 |
def chat(user_input, max_new_tokens=2048):
|
16 |
# chat history
|
17 |
+
messages_template = [
|
18 |
{"role": "system", "content": "You are Ling, an assistant created by inclusionAI"},
|
19 |
{"role": "user", "content": user_input}
|
20 |
]
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
response = client.chat.completions.create(
|
23 |
+
model="Ling-lite-1.5-250604",
|
24 |
+
messages=messages_template,
|
25 |
+
max_tokens=max_new_tokens,
|
26 |
+
temperature=0.7,
|
27 |
+
top_p=1,
|
28 |
+
)
|
29 |
+
yield response.choices[0].message.content
|
30 |
|
|
|
|
|
|
|
|
|
|
|
31 |
|
|
|
32 |
|
33 |
# Create a custom layout using Blocks
|
34 |
with gr.Blocks(css="""
|
app_api.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
3 |
+
from threading import Thread
|
4 |
+
import gradio as gr
|
5 |
+
import re
|
6 |
+
import torch
|
7 |
+
from openai import OpenAI
|
8 |
+
|
9 |
+
client = OpenAI(
|
10 |
+
api_key="sk-420ab66020704eabbe37501ec39b7a2b",
|
11 |
+
base_url="https://bailingchat.alipay.com",
|
12 |
+
)
|
13 |
+
|
14 |
+
# define chat function
|
15 |
+
def chat(user_input, max_new_tokens=2048):
|
16 |
+
# chat history
|
17 |
+
messages_template = [
|
18 |
+
{"role": "system", "content": "You are Ling, an assistant created by inclusionAI"},
|
19 |
+
{"role": "user", "content": user_input}
|
20 |
+
]
|
21 |
+
|
22 |
+
response = client.chat.completions.create(
|
23 |
+
model="Ling-lite-1.5-250604",
|
24 |
+
messages=messages_template,
|
25 |
+
max_tokens=max_new_tokens,
|
26 |
+
temperature=0.7,
|
27 |
+
top_p=1,
|
28 |
+
)
|
29 |
+
yield response.choices[0].message.content
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
# Create a custom layout using Blocks
|
34 |
+
with gr.Blocks(css="""
|
35 |
+
#markdown-output {
|
36 |
+
height: 300px;
|
37 |
+
overflow-y: auto;
|
38 |
+
border: 1px solid #ddd;
|
39 |
+
padding: 10px;
|
40 |
+
}
|
41 |
+
""") as demo:
|
42 |
+
gr.Markdown(
|
43 |
+
"## Ling-lite-1.5 AI Assistant\n"
|
44 |
+
"Based on [inclusionAI/Ling-lite-1.5](https://huggingface.co/inclusionAI/Ling-lite-1.5) "
|
45 |
+
)
|
46 |
+
|
47 |
+
with gr.Row():
|
48 |
+
max_tokens_slider = gr.Slider(minimum=128, maximum=2048, step=16, label="Generated length")
|
49 |
+
|
50 |
+
# output_box = gr.Textbox(lines=10, label="Response")
|
51 |
+
output_box = gr.Markdown(label="Response", elem_id="markdown-output")
|
52 |
+
input_box = gr.Textbox(lines=8, label="Input you question")
|
53 |
+
|
54 |
+
examples = gr.Examples(
|
55 |
+
examples=[
|
56 |
+
["Introducing the basic concepts of large language models"],
|
57 |
+
["How to solve long context dependencies in math problems?"]
|
58 |
+
],
|
59 |
+
inputs=input_box
|
60 |
+
)
|
61 |
+
|
62 |
+
interface = gr.Interface(
|
63 |
+
fn=chat,
|
64 |
+
inputs=[input_box, max_tokens_slider],
|
65 |
+
outputs=output_box,
|
66 |
+
live=False # disable auto-triggering on input change
|
67 |
+
)
|
68 |
+
|
69 |
+
# launch Gradio Service
|
70 |
+
demo.queue()
|
71 |
+
demo.launch()
|
72 |
+
|
73 |
+
# Construct Gradio Interface
|
74 |
+
#interface = gr.Interface(
|
75 |
+
# fn=chat,
|
76 |
+
# inputs=[
|
77 |
+
# gr.Textbox(lines=8, label="输入你的问题"),
|
78 |
+
# gr.Slider(minimum=100, maximum=102400, step=50, label="生成长度")
|
79 |
+
# ],
|
80 |
+
# outputs=[
|
81 |
+
# gr.Textbox(lines=8, label="模型回复")
|
82 |
+
# ],
|
83 |
+
# title="Ling-lite-1.5 AI助手",
|
84 |
+
# description="基于 [inclusionAI/Ling-lite-1.5](https://huggingface.co/inclusionAI/Ling-lite-1.5) 的对话式文本生成演示。",
|
85 |
+
# examples=[
|
86 |
+
# ["介绍大型语言模型的基本概念"],
|
87 |
+
# ["如何解决数学问题中的长上下文依赖?"]
|
88 |
+
# ]
|
89 |
+
#)
|
90 |
+
|
91 |
+
# launch Gradion Service
|
92 |
+
#interface.launch()
|
app_hf_model.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
3 |
+
from threading import Thread
|
4 |
+
import gradio as gr
|
5 |
+
import re
|
6 |
+
import torch
|
7 |
+
|
8 |
+
# load model and tokenizer
|
9 |
+
model_name = "inclusionAI/Ling-lite-1.5"
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(
|
12 |
+
model_name,
|
13 |
+
torch_dtype="auto",
|
14 |
+
device_map="auto",
|
15 |
+
trust_remote_code=True
|
16 |
+
).eval()
|
17 |
+
|
18 |
+
# define chat function
|
19 |
+
def chat(user_input, max_new_tokens=2048):
|
20 |
+
# chat history
|
21 |
+
messages = [
|
22 |
+
{"role": "system", "content": "You are Ling, an assistant created by inclusionAI"},
|
23 |
+
{"role": "user", "content": user_input}
|
24 |
+
]
|
25 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
26 |
+
|
27 |
+
# encode the input prompt
|
28 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
29 |
+
|
30 |
+
#create streamer
|
31 |
+
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
|
32 |
+
|
33 |
+
def generate():
|
34 |
+
model.generate(**inputs, max_new_tokens=max_new_tokens, streamer=streamer)
|
35 |
+
|
36 |
+
thread = Thread(target=generate)
|
37 |
+
thread.start()
|
38 |
+
|
39 |
+
start_idx = len("SYSTEM") + len(messages[0]["content"]) + len("HUMAN") + len(user_input) + len("ASSISTANT")
|
40 |
+
generated_text = ""
|
41 |
+
for new_text in streamer:
|
42 |
+
generated_text += new_text
|
43 |
+
yield generated_text[start_idx:]
|
44 |
+
|
45 |
+
thread.join()
|
46 |
+
|
47 |
+
# Create a custom layout using Blocks
|
48 |
+
with gr.Blocks(css="""
|
49 |
+
#markdown-output {
|
50 |
+
height: 300px;
|
51 |
+
overflow-y: auto;
|
52 |
+
border: 1px solid #ddd;
|
53 |
+
padding: 10px;
|
54 |
+
}
|
55 |
+
""") as demo:
|
56 |
+
gr.Markdown(
|
57 |
+
"## Ling-lite-1.5 AI Assistant\n"
|
58 |
+
"Based on [inclusionAI/Ling-lite-1.5](https://huggingface.co/inclusionAI/Ling-lite-1.5) "
|
59 |
+
)
|
60 |
+
|
61 |
+
with gr.Row():
|
62 |
+
max_tokens_slider = gr.Slider(minimum=128, maximum=2048, step=16, label="Generated length")
|
63 |
+
|
64 |
+
# output_box = gr.Textbox(lines=10, label="Response")
|
65 |
+
output_box = gr.Markdown(label="Response", elem_id="markdown-output")
|
66 |
+
input_box = gr.Textbox(lines=8, label="Input you question")
|
67 |
+
|
68 |
+
examples = gr.Examples(
|
69 |
+
examples=[
|
70 |
+
["Introducing the basic concepts of large language models"],
|
71 |
+
["How to solve long context dependencies in math problems?"]
|
72 |
+
],
|
73 |
+
inputs=input_box
|
74 |
+
)
|
75 |
+
|
76 |
+
interface = gr.Interface(
|
77 |
+
fn=chat,
|
78 |
+
inputs=[input_box, max_tokens_slider],
|
79 |
+
outputs=output_box,
|
80 |
+
live=False # disable auto-triggering on input change
|
81 |
+
)
|
82 |
+
|
83 |
+
# launch Gradio Service
|
84 |
+
demo.queue()
|
85 |
+
demo.launch()
|
86 |
+
|
87 |
+
# Construct Gradio Interface
|
88 |
+
#interface = gr.Interface(
|
89 |
+
# fn=chat,
|
90 |
+
# inputs=[
|
91 |
+
# gr.Textbox(lines=8, label="输入你的问题"),
|
92 |
+
# gr.Slider(minimum=100, maximum=102400, step=50, label="生成长度")
|
93 |
+
# ],
|
94 |
+
# outputs=[
|
95 |
+
# gr.Textbox(lines=8, label="模型回复")
|
96 |
+
# ],
|
97 |
+
# title="Ling-lite-1.5 AI助手",
|
98 |
+
# description="基于 [inclusionAI/Ling-lite-1.5](https://huggingface.co/inclusionAI/Ling-lite-1.5) 的对话式文本生成演示。",
|
99 |
+
# examples=[
|
100 |
+
# ["介绍大型语言模型的基本概念"],
|
101 |
+
# ["如何解决数学问题中的长上下文依赖?"]
|
102 |
+
# ]
|
103 |
+
#)
|
104 |
+
|
105 |
+
# launch Gradion Service
|
106 |
+
#interface.launch()
|