Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,35 +4,30 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
4 |
from peft import PeftModel, PeftConfig
|
5 |
from fastapi.middleware.cors import CORSMiddleware
|
6 |
import torch
|
7 |
-
from huggingface_hub import login
|
8 |
from dotenv import load_dotenv
|
9 |
import os
|
10 |
|
11 |
-
load_dotenv()
|
12 |
|
|
|
13 |
hf_token = os.getenv("HF_TOKEN")
|
14 |
|
15 |
-
login(token=hf_token)
|
16 |
|
17 |
app = FastAPI()
|
18 |
|
19 |
-
# Allow frontend communication
|
20 |
app.add_middleware(
|
21 |
CORSMiddleware,
|
22 |
-
allow_origins=["
|
23 |
allow_credentials=True,
|
24 |
allow_methods=["*"],
|
25 |
allow_headers=["*"],
|
26 |
)
|
27 |
|
28 |
-
|
29 |
-
adapter_path = "C:/Users/nimes/Desktop/NLP Projects/Multi-label Email Classifier/checkpoint-711"
|
30 |
|
31 |
try:
|
32 |
-
# Load PEFT config to get base model path
|
33 |
peft_config = PeftConfig.from_pretrained(adapter_path)
|
34 |
-
|
35 |
-
|
36 |
base_model = AutoModelForCausalLM.from_pretrained(
|
37 |
peft_config.base_model_name_or_path,
|
38 |
torch_dtype=torch.float32,
|
@@ -40,10 +35,9 @@ try:
|
|
40 |
)
|
41 |
tokenizer = AutoTokenizer.from_pretrained(peft_config.base_model_name_or_path)
|
42 |
|
43 |
-
|
44 |
model = PeftModel.from_pretrained(base_model, adapter_path, device_map={"": "cpu"})
|
45 |
|
46 |
-
# Build inference pipeline
|
47 |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
48 |
|
49 |
except Exception as e:
|
|
|
4 |
from peft import PeftModel, PeftConfig
|
5 |
from fastapi.middleware.cors import CORSMiddleware
|
6 |
import torch
|
|
|
7 |
from dotenv import load_dotenv
|
8 |
import os
|
9 |
|
|
|
10 |
|
11 |
+
load_dotenv()
|
12 |
hf_token = os.getenv("HF_TOKEN")
|
13 |
|
|
|
14 |
|
15 |
app = FastAPI()
|
16 |
|
|
|
17 |
app.add_middleware(
|
18 |
CORSMiddleware,
|
19 |
+
allow_origins=["*"],
|
20 |
allow_credentials=True,
|
21 |
allow_methods=["*"],
|
22 |
allow_headers=["*"],
|
23 |
)
|
24 |
|
25 |
+
adapter_path = "./checkpoint-711"
|
|
|
26 |
|
27 |
try:
|
|
|
28 |
peft_config = PeftConfig.from_pretrained(adapter_path)
|
29 |
+
|
30 |
+
|
31 |
base_model = AutoModelForCausalLM.from_pretrained(
|
32 |
peft_config.base_model_name_or_path,
|
33 |
torch_dtype=torch.float32,
|
|
|
35 |
)
|
36 |
tokenizer = AutoTokenizer.from_pretrained(peft_config.base_model_name_or_path)
|
37 |
|
38 |
+
|
39 |
model = PeftModel.from_pretrained(base_model, adapter_path, device_map={"": "cpu"})
|
40 |
|
|
|
41 |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
42 |
|
43 |
except Exception as e:
|