Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
4 |
+
from peft import PeftModel, PeftConfig
|
5 |
+
from fastapi.middleware.cors import CORSMiddleware
|
6 |
+
import torch
|
7 |
+
from huggingface_hub import login
|
8 |
+
from dotenv import load_dotenv
|
9 |
+
import os
|
10 |
+
|
11 |
+
load_dotenv()
|
12 |
+
|
13 |
+
hf_token = os.getenv("HF_TOKEN")
|
14 |
+
|
15 |
+
login(token=hf_token)
|
16 |
+
|
17 |
+
app = FastAPI()
|
18 |
+
|
19 |
+
# Allow frontend communication
|
20 |
+
app.add_middleware(
|
21 |
+
CORSMiddleware,
|
22 |
+
allow_origins=["http://localhost:3000"],
|
23 |
+
allow_credentials=True,
|
24 |
+
allow_methods=["*"],
|
25 |
+
allow_headers=["*"],
|
26 |
+
)
|
27 |
+
|
28 |
+
# === Load Base + Adapter ===
|
29 |
+
adapter_path = "C:/Users/nimes/Desktop/NLP Projects/Multi-label Email Classifier/checkpoint-711"
|
30 |
+
|
31 |
+
try:
|
32 |
+
# Load PEFT config to get base model path
|
33 |
+
peft_config = PeftConfig.from_pretrained(adapter_path)
|
34 |
+
|
35 |
+
# Load base model and tokenizer (CPU-safe)
|
36 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
37 |
+
peft_config.base_model_name_or_path,
|
38 |
+
torch_dtype=torch.float32,
|
39 |
+
device_map={"": "cpu"}
|
40 |
+
)
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained(peft_config.base_model_name_or_path)
|
42 |
+
|
43 |
+
# Load LoRA adapter
|
44 |
+
model = PeftModel.from_pretrained(base_model, adapter_path, device_map={"": "cpu"})
|
45 |
+
|
46 |
+
# Build inference pipeline
|
47 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
48 |
+
|
49 |
+
except Exception as e:
|
50 |
+
raise RuntimeError(f"❌ Failed to load model + adapter: {str(e)}")
|
51 |
+
|
52 |
+
# === Request Schema ===
|
53 |
+
class EmailInput(BaseModel):
|
54 |
+
subject: str
|
55 |
+
body: str
|
56 |
+
|
57 |
+
# === Endpoint ===
|
58 |
+
@app.post("/classify")
|
59 |
+
async def classify_email(data: EmailInput):
|
60 |
+
prompt = f"""### Subject:\n{data.subject}\n\n### Body:\n{data.body}\n\n### Labels:"""
|
61 |
+
try:
|
62 |
+
result = pipe(prompt, max_new_tokens=50, do_sample=True, top_k=50, top_p=0.95)
|
63 |
+
full_text = result[0]["generated_text"]
|
64 |
+
label_section = full_text.split("### Labels:")[1].strip()
|
65 |
+
return {"label": label_section}
|
66 |
+
except Exception as e:
|
67 |
+
raise HTTPException(status_code=500, detail=f"Model inference failed: {str(e)}")
|