iamseyhmus7's picture
Update app.py
c5c1544 verified
import os
import asyncio
import re
import yaml
import torch
import numpy as np
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
from sentence_transformers import SentenceTransformer, CrossEncoder
from pinecone import Pinecone
from pathlib import Path
from dotenv import load_dotenv
# === CONFIG LOAD ===
CONFIG_PATH = Path(__file__).resolve().parent / "config.yaml"
def load_config():
with open(CONFIG_PATH, "r", encoding="utf-8") as f:
return yaml.safe_load(f)
config = load_config()
# === ENV LOAD ===
env_path = Path(__file__).resolve().parent / ".env"
load_dotenv(dotenv_path=env_path)
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
PINECONE_ENV = os.getenv("PINECONE_ENVIRONMENT")
PINECONE_INDEX_NAME = os.getenv("PINECONE_INDEX_NAME")
if not all([PINECONE_API_KEY, PINECONE_ENV, PINECONE_INDEX_NAME]):
raise ValueError("Pinecone ortam değişkenleri eksik!")
# === PINECONE CONNECT ===
pinecone_client = Pinecone(api_key=PINECONE_API_KEY, environment=PINECONE_ENV)
index = pinecone_client.Index(PINECONE_INDEX_NAME)
# === MODEL LOAD ===
MODEL_PATH = "iamseyhmus7/GenerationTurkishGPT2_final"
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH)
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = tokenizer.pad_token_id
model.eval()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
embedder = SentenceTransformer("intfloat/multilingual-e5-large", device="cpu")
cross_encoder = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2", device="cpu")
def clean_text_output(text: str) -> str:
# ... Aynı şekilde bırakabilirsin ...
text = re.sub(r"^(Sadece doğru, kısa ve açık bilgi ver\.? Ekstra açıklama veya kaynak ekleme\.?)", "", text, flags=re.IGNORECASE)
text = re.sub(r"^.*?(Metin:|output:|Cevap:)", "", text, flags=re.IGNORECASE | re.DOTALL)
text = re.sub(r"^(Aşağıdaki haber.*|Yalnızca olay özeti.*|Cevapta sadece.*|Metin:|output:|Cevap:)", "", text, flags=re.IGNORECASE | re.MULTILINE)
text = re.sub(r"(Detaylı bilgi için.*|Daha fazla bilgi için.*|Wikipedia.*|Kaynak:.*|https?://\S+)", "", text, flags=re.IGNORECASE)
text = re.sub(r"^\- ", "", text, flags=re.MULTILINE)
text = re.sub(r"^\d+[\.\)]?\s+", "", text, flags=re.MULTILINE)
text = re.sub(r"\s+", " ", text).strip()
return text
def get_embedding(text: str, max_length: int = 512) -> np.ndarray:
formatted = f"query: {text.strip()}"[:max_length]
return embedder.encode(formatted, normalize_embeddings=True)
def pinecone_query(query: str, top_k: int) -> list:
query_embedding = get_embedding(query)
result = index.query(vector=query_embedding.tolist(), top_k=top_k, include_metadata=True)
matches = result.get("matches", [])
output = []
for m in matches:
text = m.get("metadata", {}).get("text", "").strip()
url = m.get("metadata", {}).get("url", "")
if text:
output.append((text, url))
return output
async def retrieve_sources_from_pinecone(query: str, top_k: int = None):
top_k = top_k or config["pinecone"]["top_k"]
output = pinecone_query(query, top_k)
if not output:
return {"sources": "", "results": [], "source_url": ""}
# Cross-encoder ile yeniden sıralama
sentence_pairs = [[query, text] for text, url in output]
scores = await asyncio.to_thread(cross_encoder.predict, sentence_pairs)
reranked = [(float(score), text, url) for score, (text, url) in zip(scores, output)]
reranked.sort(key=lambda x: x[0], reverse=True)
top_results = reranked[:1]
top_texts = [text for _, text, _ in top_results]
source_url = top_results[0][2] if top_results else ""
return {"sources": "\n".join(top_texts), "results": top_results, "source_url": source_url}
async def generate_model_response(question: str) -> str:
prompt = (
f"input: {question}\noutput:" "Sadece doğru, kısa ve açık bilgi ver. Ekstra açıklama veya kaynak ekleme."
)
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=256).to(device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=64,
do_sample=False,
num_beams=5,
no_repeat_ngram_size=3,
early_stopping=True,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id
)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
return answer
def extract_self_answer(output: str) -> str:
match = re.search(r"output:(.*)", output, flags=re.IGNORECASE | re.DOTALL)
if match:
return match.group(1).strip()
if "Cevap:" in output:
return output.split("Cevap:")[-1].strip()
return output.strip()
def cut_at_last_period(text):
"""Metni son noktaya kadar keser, sonrasında kalan eksik cümleleri atar."""
last_period = text.rfind(".")
if last_period != -1:
return text[:last_period+1].strip()
return text.strip()
# ... (devamı aynı)
async def selfrag_agent(question: str):
# 1. VDB cevabı ve kaynak url
result = await retrieve_sources_from_pinecone(question)
vdb_paragraph = result.get("sources", "").strip()
source_url = result.get("source_url", "")
# 2. Model cevabı
model_paragraph = await generate_model_response(question)
model_paragraph = extract_self_answer(model_paragraph)
# 3. Temizle
vdb_paragraph = clean_text_output(vdb_paragraph)
model_paragraph = clean_text_output(model_paragraph)
# --- NOKTA KONTROLÜ EKLENDİ ---
vdb_paragraph = cut_at_last_period(vdb_paragraph)
model_paragraph = cut_at_last_period(model_paragraph)
# -----------------------------
# 4. Cross-encoder ile skorlama
candidates = []
candidate_urls = []
label_names = []
if vdb_paragraph:
candidates.append(vdb_paragraph)
candidate_urls.append(source_url)
label_names.append("VDB")
if model_paragraph:
candidates.append(model_paragraph)
candidate_urls.append(None)
label_names.append("MODEL")
if not candidates:
return {"answer": "Cevap bulunamadı.", "source_url": None}
sentence_pairs = [[question, cand] for cand in candidates]
scores = await asyncio.to_thread(cross_encoder.predict, sentence_pairs)
print(f"VDB Skor: {scores[0]:.4f}")
if len(scores) > 1:
print(f"Model Skor: {scores[1]:.4f}")
# === Seçim Kuralları ===
if len(scores) == 2:
vdb_score = scores[0]
model_score = scores[1]
if model_score > 1.5 * vdb_score:
best_idx = 1
else:
best_idx = 0
else:
best_idx = int(np.argmax(scores))
final_answer = candidates[best_idx]
final_source_url = candidate_urls[best_idx]
# --- SON NOKTA KONTROLÜ FINAL CEVAPTA DA ---
final_answer = cut_at_last_period(final_answer)
# -------------------------------------------
return {
"answer": final_answer,
"source_url": final_source_url
}
def gradio_chat(message, history):
try:
result = asyncio.run(selfrag_agent(message))
response = result["answer"]
if result.get("source_url"):
response += f"\n\n[Daha fazla bilgi için tıkla]({result['source_url']})"
except Exception as e:
response = f"Hata oluştu: {e}"
history = history + [[message, response]]
return "", history
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.HTML(
"""
<div style='display: flex; align-items: center; gap: 16px; margin-bottom: 12px;'>
<img src='https://em-content.zobj.net/source/telegram/403/globe-showing-europe-africa_1f30d.png' width='50'>
<h1 style='margin-bottom: 0'>Türkçe Son Dakika RAG Chatbot</h1>
</div>
<p style='font-size: 18px; color: #666; margin-top:0'>
Hem genel bilgi, hem en güncel haberleri RAG teknolojisiyle birleştiren asistan.<br>
İstediğini sor, canlı haberlere ulaş!
</p>
"""
)
with gr.Row():
with gr.Column(scale=4):
chatbot = gr.Chatbot(show_copy_button=True, height=480)
msg = gr.Textbox(label="Bir soru yazın ve Enter'a basın", scale=2)
with gr.Row():
send_btn = gr.Button("Gönder")
clear = gr.Button("Sohbeti Temizle")
with gr.Column(scale=1):
gr.Markdown("#### Son Eklenen Haberler") # İstersen burayı dinamik yapabilirsin
haberler = gr.Markdown("• Haber başlığı 1\n• Haber başlığı 2\n• Haber başlığı 3")
msg.submit(gradio_chat, [msg, chatbot], [msg, chatbot])
send_btn.click(gradio_chat, [msg, chatbot], [msg, chatbot])
clear.click(lambda: None, None, chatbot, queue=False)
demo.launch()