File size: 8,948 Bytes
9e4d6c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f373be
 
 
9e4d6c1
 
2f373be
fe3527f
9e4d6c1
2f373be
9e4d6c1
 
 
2f373be
 
9e4d6c1
 
 
2f373be
9e4d6c1
 
 
2f373be
 
 
 
 
 
 
9e4d6c1
 
 
 
 
2f373be
 
9e4d6c1
 
 
 
 
 
 
 
 
 
 
 
2f373be
9e4d6c1
 
 
 
 
 
 
 
 
2f373be
9e4d6c1
2f373be
9e4d6c1
2f373be
9e4d6c1
 
 
 
 
 
 
 
 
 
 
 
 
 
2f373be
9e4d6c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5c1544
 
 
 
 
 
 
 
 
9e4d6c1
 
 
 
 
 
 
 
 
 
2f373be
9e4d6c1
 
 
c5c1544
 
 
 
 
9e4d6c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5c1544
 
 
 
9e4d6c1
 
 
 
 
 
2f373be
 
 
 
 
 
 
9e4d6c1
 
 
 
 
 
 
 
 
 
 
56f067a
9e4d6c1
 
 
 
 
 
 
 
 
 
 
 
2f373be
9e4d6c1
2f373be
 
9e4d6c1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import os
import asyncio
import re
import yaml
import torch
import numpy as np
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
from sentence_transformers import SentenceTransformer, CrossEncoder
from pinecone import Pinecone
from pathlib import Path
from dotenv import load_dotenv

# === CONFIG LOAD ===
CONFIG_PATH = Path(__file__).resolve().parent / "config.yaml"
def load_config():
    with open(CONFIG_PATH, "r", encoding="utf-8") as f:
        return yaml.safe_load(f)
config = load_config()

# === ENV LOAD ===
env_path = Path(__file__).resolve().parent / ".env"
load_dotenv(dotenv_path=env_path)

PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
PINECONE_ENV = os.getenv("PINECONE_ENVIRONMENT")
PINECONE_INDEX_NAME = os.getenv("PINECONE_INDEX_NAME")
if not all([PINECONE_API_KEY, PINECONE_ENV, PINECONE_INDEX_NAME]):
    raise ValueError("Pinecone ortam değişkenleri eksik!")

# === PINECONE CONNECT ===
pinecone_client = Pinecone(api_key=PINECONE_API_KEY, environment=PINECONE_ENV)
index = pinecone_client.Index(PINECONE_INDEX_NAME)

# === MODEL LOAD ===
MODEL_PATH = "iamseyhmus7/GenerationTurkishGPT2_final"
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH)
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = tokenizer.pad_token_id
model.eval()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

embedder = SentenceTransformer("intfloat/multilingual-e5-large", device="cpu")
cross_encoder = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2", device="cpu")

def clean_text_output(text: str) -> str:
    # ... Aynı şekilde bırakabilirsin ...
    text = re.sub(r"^(Sadece doğru, kısa ve açık bilgi ver\.? Ekstra açıklama veya kaynak ekleme\.?)", "", text, flags=re.IGNORECASE)
    text = re.sub(r"^.*?(Metin:|output:|Cevap:)", "", text, flags=re.IGNORECASE | re.DOTALL)
    text = re.sub(r"^(Aşağıdaki haber.*|Yalnızca olay özeti.*|Cevapta sadece.*|Metin:|output:|Cevap:)", "", text, flags=re.IGNORECASE | re.MULTILINE)
    text = re.sub(r"(Detaylı bilgi için.*|Daha fazla bilgi için.*|Wikipedia.*|Kaynak:.*|https?://\S+)", "", text, flags=re.IGNORECASE)
    text = re.sub(r"^\- ", "", text, flags=re.MULTILINE)
    text = re.sub(r"^\d+[\.\)]?\s+", "", text, flags=re.MULTILINE)
    text = re.sub(r"\s+", " ", text).strip()
    return text

def get_embedding(text: str, max_length: int = 512) -> np.ndarray:
    formatted = f"query: {text.strip()}"[:max_length]
    return embedder.encode(formatted, normalize_embeddings=True)

def pinecone_query(query: str, top_k: int) -> list:
    query_embedding = get_embedding(query)
    result = index.query(vector=query_embedding.tolist(), top_k=top_k, include_metadata=True)
    matches = result.get("matches", [])
    output = []
    for m in matches:
        text = m.get("metadata", {}).get("text", "").strip()
        url = m.get("metadata", {}).get("url", "")
        if text:
            output.append((text, url))
    return output

async def retrieve_sources_from_pinecone(query: str, top_k: int = None):
    top_k = top_k or config["pinecone"]["top_k"]
    output = pinecone_query(query, top_k)
    if not output:
        return {"sources": "", "results": [], "source_url": ""}
    # Cross-encoder ile yeniden sıralama
    sentence_pairs = [[query, text] for text, url in output]
    scores = await asyncio.to_thread(cross_encoder.predict, sentence_pairs)
    reranked = [(float(score), text, url) for score, (text, url) in zip(scores, output)]
    reranked.sort(key=lambda x: x[0], reverse=True)
    top_results = reranked[:1]
    top_texts = [text for _, text, _ in top_results]
    source_url = top_results[0][2] if top_results else ""
    return {"sources": "\n".join(top_texts), "results": top_results, "source_url": source_url}

async def generate_model_response(question: str) -> str:
    prompt = (
        f"input: {question}\noutput:" "Sadece doğru, kısa ve açık bilgi ver. Ekstra açıklama veya kaynak ekleme."
    )
    inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=256).to(device)
    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            max_new_tokens=64,
            do_sample=False,
            num_beams=5,
            no_repeat_ngram_size=3,
            early_stopping=True,
            pad_token_id=tokenizer.pad_token_id,
            eos_token_id=tokenizer.eos_token_id
        )
    answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return answer

def extract_self_answer(output: str) -> str:
    match = re.search(r"output:(.*)", output, flags=re.IGNORECASE | re.DOTALL)
    if match:
        return match.group(1).strip()
    if "Cevap:" in output:
        return output.split("Cevap:")[-1].strip()
    return output.strip()

def cut_at_last_period(text):
    """Metni son noktaya kadar keser, sonrasında kalan eksik cümleleri atar."""
    last_period = text.rfind(".")
    if last_period != -1:
        return text[:last_period+1].strip()
    return text.strip()

# ... (devamı aynı)

async def selfrag_agent(question: str):
    # 1. VDB cevabı ve kaynak url
    result = await retrieve_sources_from_pinecone(question)
    vdb_paragraph = result.get("sources", "").strip()
    source_url = result.get("source_url", "")

    # 2. Model cevabı
    model_paragraph = await generate_model_response(question)
    model_paragraph = extract_self_answer(model_paragraph)

    # 3. Temizle
    vdb_paragraph = clean_text_output(vdb_paragraph)
    model_paragraph = clean_text_output(model_paragraph)

    # --- NOKTA KONTROLÜ EKLENDİ ---
    vdb_paragraph = cut_at_last_period(vdb_paragraph)
    model_paragraph = cut_at_last_period(model_paragraph)
    # -----------------------------

    # 4. Cross-encoder ile skorlama
    candidates = []
    candidate_urls = []
    label_names = []
    if vdb_paragraph:
        candidates.append(vdb_paragraph)
        candidate_urls.append(source_url)
        label_names.append("VDB")
    if model_paragraph:
        candidates.append(model_paragraph)
        candidate_urls.append(None)
        label_names.append("MODEL")

    if not candidates:
        return {"answer": "Cevap bulunamadı.", "source_url": None}

    sentence_pairs = [[question, cand] for cand in candidates]
    scores = await asyncio.to_thread(cross_encoder.predict, sentence_pairs)
    print(f"VDB Skor: {scores[0]:.4f}")
    if len(scores) > 1:
        print(f"Model Skor: {scores[1]:.4f}")

    # === Seçim Kuralları ===
    if len(scores) == 2:
        vdb_score = scores[0]
        model_score = scores[1]
        if model_score > 1.5 * vdb_score:
            best_idx = 1
        else:
            best_idx = 0
    else:
        best_idx = int(np.argmax(scores))

    final_answer = candidates[best_idx]
    final_source_url = candidate_urls[best_idx]

    # --- SON NOKTA KONTROLÜ FINAL CEVAPTA DA ---
    final_answer = cut_at_last_period(final_answer)
    # -------------------------------------------

    return {
        "answer": final_answer,
        "source_url": final_source_url
    }

def gradio_chat(message, history):
    try:
        result = asyncio.run(selfrag_agent(message))
        response = result["answer"]
        if result.get("source_url"):
            response += f"\n\n[Daha fazla bilgi için tıkla]({result['source_url']})"
    except Exception as e:
        response = f"Hata oluştu: {e}"
    history = history + [[message, response]]
    return "", history

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.HTML(
        """
        <div style='display: flex; align-items: center; gap: 16px; margin-bottom: 12px;'>
            <img src='https://em-content.zobj.net/source/telegram/403/globe-showing-europe-africa_1f30d.png' width='50'>
            <h1 style='margin-bottom: 0'>Türkçe Son Dakika RAG Chatbot</h1>
        </div>
        <p style='font-size: 18px; color: #666; margin-top:0'>
             Hem genel bilgi, hem en güncel haberleri RAG teknolojisiyle birleştiren asistan.<br>
            İstediğini sor, canlı haberlere ulaş!
        </p>
        """
    )
    with gr.Row():
        with gr.Column(scale=4):
            chatbot = gr.Chatbot(show_copy_button=True, height=480)
            msg = gr.Textbox(label="Bir soru yazın ve Enter'a basın", scale=2)
            with gr.Row():
                send_btn = gr.Button("Gönder")
                clear = gr.Button("Sohbeti Temizle")
        with gr.Column(scale=1):
            gr.Markdown("#### Son Eklenen Haberler")  # İstersen burayı dinamik yapabilirsin
            haberler = gr.Markdown("• Haber başlığı 1\n• Haber başlığı 2\n• Haber başlığı 3")
    msg.submit(gradio_chat, [msg, chatbot], [msg, chatbot])
    send_btn.click(gradio_chat, [msg, chatbot], [msg, chatbot])
    clear.click(lambda: None, None, chatbot, queue=False)
demo.launch()