hponepyae's picture
Update app.py
bc69d2f verified
raw
history blame
5.87 kB
import gradio as gr
from transformers import pipeline
from PIL import Image
import torch
import os
import spaces
# --- Initialize the Model Pipeline ---
print("Loading MedGemma model...")
try:
pipe = pipeline(
"image-text-to-text",
model="google/medgemma-4b-it",
torch_dtype=torch.bfloat16,
device_map="auto",
token=os.environ.get("HF_TOKEN")
)
model_loaded = True
print("Model loaded successfully!")
except Exception as e:
model_loaded = False
print(f"Error loading model: {e}")
# --- Core Analysis Function ---
@spaces.GPU()
def analyze_symptoms(symptom_image, symptoms_text):
"""
Analyzes user's symptoms using a corrected prompt-building logic.
"""
if not model_loaded:
return "Error: The AI model could not be loaded. Please check the Space logs."
# Standardize input to avoid issues with None or whitespace
symptoms_text = symptoms_text.strip() if symptoms_text else ""
if symptom_image is None and not symptoms_text:
return "Please describe your symptoms or upload an image for analysis."
try:
# --- REVISED PROMPT LOGIC ---
# Build the prompt dynamically based on provided inputs.
# This is much clearer and less error-prone.
prompt_parts = [
"You are an expert, empathetic AI medical assistant. Analyze the potential medical condition based on the following information.",
"Provide a list of possible conditions, your reasoning, and a clear, actionable next-steps plan.",
"Start your analysis by describing the user-provided information (text and/or image)."
]
# This is the actual user input that the model will process.
# It's better to pass it directly instead of wrapping it in another instruction.
user_input_for_model = []
if symptoms_text:
user_input_for_model.append({"type": "text", "text": symptoms_text})
if symptom_image:
# The pipeline expects an image object. PIL Image is correct.
user_input_for_model.append({"type": "image", "image": symptom_image})
# The system prompt sets the context and instructions for the AI.
system_prompt = " ".join(prompt_parts)
messages = [
{
"role": "system",
"content": [{"type": "text", "text": system_prompt}]
},
{
"role": "user",
"content": user_input_for_model
}
]
print("Generating pipeline output...")
output = pipe(messages, max_new_tokens=512, do_sample=True, temperature=0.7)
# The output format is a list containing the full conversation history.
# The last message in the list is the AI's response.
print("Pipeline Output:", output)
# Make the output processing more robust
generated = output[0]["generated_text"]
if isinstance(generated, list) and generated:
# If output is a list of dicts, take the content from the last one
result = generated[-1].get('content', str(generated))
elif isinstance(generated, str):
# If output is just a string
result = generated
else:
# Failsafe for any other unexpected format
result = str(generated)
disclaimer = "\n\n***Disclaimer: I am an AI assistant and not a medical professional. This is not a diagnosis. Please consult a doctor for any health concerns.***"
return result + disclaimer
except Exception as e:
print(f"An exception occurred during analysis: {type(e).__name__}: {e}")
return f"Error during analysis: {str(e)}"
# --- Create the Gradio Interface (No changes needed here) ---
with gr.Blocks(theme=gr.themes.Soft(), title="AI Symptom Analyzer") as demo:
gr.HTML("""
<div style="text-align: center; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; padding: 2rem; border-radius: 10px; margin-bottom: 2rem;">
<h1>๐Ÿฉบ AI Symptom Analyzer</h1>
<p>Advanced symptom analysis powered by Google's MedGemma AI</p>
</div>
""")
gr.HTML("""
<div style="background-color: #fff3cd; border: 1px solid #ffeaa7; border-radius: 8px; padding: 1rem; margin: 1rem 0; color: #856404;">
<strong>โš ๏ธ Medical Disclaimer:</strong> This AI tool is for informational purposes only and is not a substitute for professional medical diagnosis or treatment.
</div>
""")
with gr.Row(equal_height=True):
with gr.Column(scale=1):
gr.Markdown("### 1. Describe Your Symptoms")
symptoms_input = gr.Textbox(
label="Symptoms",
placeholder="e.g., 'I have a rash on my arm that is red and itchy...'", lines=5)
gr.Markdown("### 2. Upload an Image (Optional)")
image_input = gr.Image(label="Symptom Image", type="pil", height=300)
with gr.Row():
clear_btn = gr.Button("๐Ÿ—‘๏ธ Clear All", variant="secondary")
analyze_btn = gr.Button("๐Ÿ” Analyze Symptoms", variant="primary", size="lg")
with gr.Column(scale=1):
gr.Markdown("### ๐Ÿ“Š Analysis Report")
output_text = gr.Textbox(
label="AI Analysis", lines=25, show_copy_button=True, placeholder="Analysis results will appear here...")
def clear_all():
return None, "", ""
analyze_btn.click(fn=analyze_symptoms, inputs=[image_input, symptoms_input], outputs=output_text)
clear_btn.click(fn=clear_all, outputs=[image_input, symptoms_input, output_text])
if __name__ == "__main__":
print("Starting Gradio interface...")
demo.launch(debug=True)