File size: 5,871 Bytes
83ff66a
77793f4
b67fca4
77793f4
83ff66a
b0565c1
83ff66a
998c789
 
83ff66a
77793f4
998c789
77793f4
998c789
6ef5bdf
77793f4
83ff66a
 
77793f4
83ff66a
998c789
b67fca4
83ff66a
998c789
 
 
b67fca4
bc69d2f
b67fca4
 
998c789
bc69d2f
 
 
 
 
998c789
77793f4
 
bc69d2f
 
 
 
 
 
 
 
 
 
 
 
998c789
bc69d2f
 
ea22a67
998c789
bc69d2f
 
 
 
 
 
998c789
 
 
bc69d2f
998c789
 
 
bc69d2f
998c789
 
ea22a67
3d9624f
998c789
bc69d2f
 
ea22a67
3d9624f
ea22a67
 
 
 
 
 
 
 
 
 
 
998c789
 
 
 
77793f4
 
3d9624f
998c789
 
ea22a67
998c789
 
 
 
 
 
 
 
 
 
 
 
9c4076b
998c789
 
 
 
 
ea22a67
998c789
ea22a67
998c789
 
 
 
 
 
 
ea22a67
998c789
9c4076b
998c789
9c4076b
ea22a67
 
9c4076b
 
998c789
ea22a67
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import gradio as gr
from transformers import pipeline
from PIL import Image
import torch
import os
import spaces

# --- Initialize the Model Pipeline ---
print("Loading MedGemma model...")
try:
    pipe = pipeline(
        "image-text-to-text",
        model="google/medgemma-4b-it",
        torch_dtype=torch.bfloat16,
        device_map="auto",
        token=os.environ.get("HF_TOKEN")
    )
    model_loaded = True
    print("Model loaded successfully!")
except Exception as e:
    model_loaded = False
    print(f"Error loading model: {e}")

# --- Core Analysis Function ---
@spaces.GPU()
def analyze_symptoms(symptom_image, symptoms_text):
    """
    Analyzes user's symptoms using a corrected prompt-building logic.
    """
    if not model_loaded:
        return "Error: The AI model could not be loaded. Please check the Space logs."

    # Standardize input to avoid issues with None or whitespace
    symptoms_text = symptoms_text.strip() if symptoms_text else ""

    if symptom_image is None and not symptoms_text:
        return "Please describe your symptoms or upload an image for analysis."

    try:
        # --- REVISED PROMPT LOGIC ---
        # Build the prompt dynamically based on provided inputs.
        # This is much clearer and less error-prone.
        prompt_parts = [
            "You are an expert, empathetic AI medical assistant. Analyze the potential medical condition based on the following information.",
            "Provide a list of possible conditions, your reasoning, and a clear, actionable next-steps plan.",
            "Start your analysis by describing the user-provided information (text and/or image)."
        ]
        
        # This is the actual user input that the model will process.
        # It's better to pass it directly instead of wrapping it in another instruction.
        user_input_for_model = []

        if symptoms_text:
            user_input_for_model.append({"type": "text", "text": symptoms_text})
        
        if symptom_image:
            # The pipeline expects an image object. PIL Image is correct.
            user_input_for_model.append({"type": "image", "image": symptom_image})
            
        # The system prompt sets the context and instructions for the AI.
        system_prompt = " ".join(prompt_parts)

        messages = [
            {
                "role": "system",
                "content": [{"type": "text", "text": system_prompt}]
            },
            {
                "role": "user",
                "content": user_input_for_model
            }
        ]
        
        print("Generating pipeline output...")
        output = pipe(messages, max_new_tokens=512, do_sample=True, temperature=0.7)
        # The output format is a list containing the full conversation history.
        # The last message in the list is the AI's response.
        print("Pipeline Output:", output)

        # Make the output processing more robust
        generated = output[0]["generated_text"]
        if isinstance(generated, list) and generated:
            # If output is a list of dicts, take the content from the last one
            result = generated[-1].get('content', str(generated))
        elif isinstance(generated, str):
            # If output is just a string
            result = generated
        else:
            # Failsafe for any other unexpected format
            result = str(generated)

        disclaimer = "\n\n***Disclaimer: I am an AI assistant and not a medical professional. This is not a diagnosis. Please consult a doctor for any health concerns.***"
        
        return result + disclaimer

    except Exception as e:
        print(f"An exception occurred during analysis: {type(e).__name__}: {e}")
        return f"Error during analysis: {str(e)}"

# --- Create the Gradio Interface (No changes needed here) ---
with gr.Blocks(theme=gr.themes.Soft(), title="AI Symptom Analyzer") as demo:
    gr.HTML("""
        <div style="text-align: center; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; padding: 2rem; border-radius: 10px; margin-bottom: 2rem;">
            <h1>🩺 AI Symptom Analyzer</h1>
            <p>Advanced symptom analysis powered by Google's MedGemma AI</p>
        </div>
    """)
    gr.HTML("""
        <div style="background-color: #fff3cd; border: 1px solid #ffeaa7; border-radius: 8px; padding: 1rem; margin: 1rem 0; color: #856404;">
            <strong>⚠️ Medical Disclaimer:</strong> This AI tool is for informational purposes only and is not a substitute for professional medical diagnosis or treatment.
        </div>
    """)
    
    with gr.Row(equal_height=True):
        with gr.Column(scale=1):
            gr.Markdown("### 1. Describe Your Symptoms")
            symptoms_input = gr.Textbox(
                label="Symptoms",
                placeholder="e.g., 'I have a rash on my arm that is red and itchy...'", lines=5)
            gr.Markdown("### 2. Upload an Image (Optional)")
            image_input = gr.Image(label="Symptom Image", type="pil", height=300)
            with gr.Row():
                clear_btn = gr.Button("πŸ—‘οΈ Clear All", variant="secondary")
                analyze_btn = gr.Button("πŸ” Analyze Symptoms", variant="primary", size="lg")
                
        with gr.Column(scale=1):
            gr.Markdown("### πŸ“Š Analysis Report")
            output_text = gr.Textbox(
                label="AI Analysis", lines=25, show_copy_button=True, placeholder="Analysis results will appear here...")

    def clear_all():
        return None, "", ""

    analyze_btn.click(fn=analyze_symptoms, inputs=[image_input, symptoms_input], outputs=output_text)
    clear_btn.click(fn=clear_all, outputs=[image_input, symptoms_input, output_text])

if __name__ == "__main__":
    print("Starting Gradio interface...")
    demo.launch(debug=True)