Spaces:
Sleeping
Sleeping
File size: 5,871 Bytes
83ff66a 77793f4 b67fca4 77793f4 83ff66a b0565c1 83ff66a 998c789 83ff66a 77793f4 998c789 77793f4 998c789 6ef5bdf 77793f4 83ff66a 77793f4 83ff66a 998c789 b67fca4 83ff66a 998c789 b67fca4 bc69d2f b67fca4 998c789 bc69d2f 998c789 77793f4 bc69d2f 998c789 bc69d2f ea22a67 998c789 bc69d2f 998c789 bc69d2f 998c789 bc69d2f 998c789 ea22a67 3d9624f 998c789 bc69d2f ea22a67 3d9624f ea22a67 998c789 77793f4 3d9624f 998c789 ea22a67 998c789 9c4076b 998c789 ea22a67 998c789 ea22a67 998c789 ea22a67 998c789 9c4076b 998c789 9c4076b ea22a67 9c4076b 998c789 ea22a67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import gradio as gr
from transformers import pipeline
from PIL import Image
import torch
import os
import spaces
# --- Initialize the Model Pipeline ---
print("Loading MedGemma model...")
try:
pipe = pipeline(
"image-text-to-text",
model="google/medgemma-4b-it",
torch_dtype=torch.bfloat16,
device_map="auto",
token=os.environ.get("HF_TOKEN")
)
model_loaded = True
print("Model loaded successfully!")
except Exception as e:
model_loaded = False
print(f"Error loading model: {e}")
# --- Core Analysis Function ---
@spaces.GPU()
def analyze_symptoms(symptom_image, symptoms_text):
"""
Analyzes user's symptoms using a corrected prompt-building logic.
"""
if not model_loaded:
return "Error: The AI model could not be loaded. Please check the Space logs."
# Standardize input to avoid issues with None or whitespace
symptoms_text = symptoms_text.strip() if symptoms_text else ""
if symptom_image is None and not symptoms_text:
return "Please describe your symptoms or upload an image for analysis."
try:
# --- REVISED PROMPT LOGIC ---
# Build the prompt dynamically based on provided inputs.
# This is much clearer and less error-prone.
prompt_parts = [
"You are an expert, empathetic AI medical assistant. Analyze the potential medical condition based on the following information.",
"Provide a list of possible conditions, your reasoning, and a clear, actionable next-steps plan.",
"Start your analysis by describing the user-provided information (text and/or image)."
]
# This is the actual user input that the model will process.
# It's better to pass it directly instead of wrapping it in another instruction.
user_input_for_model = []
if symptoms_text:
user_input_for_model.append({"type": "text", "text": symptoms_text})
if symptom_image:
# The pipeline expects an image object. PIL Image is correct.
user_input_for_model.append({"type": "image", "image": symptom_image})
# The system prompt sets the context and instructions for the AI.
system_prompt = " ".join(prompt_parts)
messages = [
{
"role": "system",
"content": [{"type": "text", "text": system_prompt}]
},
{
"role": "user",
"content": user_input_for_model
}
]
print("Generating pipeline output...")
output = pipe(messages, max_new_tokens=512, do_sample=True, temperature=0.7)
# The output format is a list containing the full conversation history.
# The last message in the list is the AI's response.
print("Pipeline Output:", output)
# Make the output processing more robust
generated = output[0]["generated_text"]
if isinstance(generated, list) and generated:
# If output is a list of dicts, take the content from the last one
result = generated[-1].get('content', str(generated))
elif isinstance(generated, str):
# If output is just a string
result = generated
else:
# Failsafe for any other unexpected format
result = str(generated)
disclaimer = "\n\n***Disclaimer: I am an AI assistant and not a medical professional. This is not a diagnosis. Please consult a doctor for any health concerns.***"
return result + disclaimer
except Exception as e:
print(f"An exception occurred during analysis: {type(e).__name__}: {e}")
return f"Error during analysis: {str(e)}"
# --- Create the Gradio Interface (No changes needed here) ---
with gr.Blocks(theme=gr.themes.Soft(), title="AI Symptom Analyzer") as demo:
gr.HTML("""
<div style="text-align: center; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; padding: 2rem; border-radius: 10px; margin-bottom: 2rem;">
<h1>π©Ί AI Symptom Analyzer</h1>
<p>Advanced symptom analysis powered by Google's MedGemma AI</p>
</div>
""")
gr.HTML("""
<div style="background-color: #fff3cd; border: 1px solid #ffeaa7; border-radius: 8px; padding: 1rem; margin: 1rem 0; color: #856404;">
<strong>β οΈ Medical Disclaimer:</strong> This AI tool is for informational purposes only and is not a substitute for professional medical diagnosis or treatment.
</div>
""")
with gr.Row(equal_height=True):
with gr.Column(scale=1):
gr.Markdown("### 1. Describe Your Symptoms")
symptoms_input = gr.Textbox(
label="Symptoms",
placeholder="e.g., 'I have a rash on my arm that is red and itchy...'", lines=5)
gr.Markdown("### 2. Upload an Image (Optional)")
image_input = gr.Image(label="Symptom Image", type="pil", height=300)
with gr.Row():
clear_btn = gr.Button("ποΈ Clear All", variant="secondary")
analyze_btn = gr.Button("π Analyze Symptoms", variant="primary", size="lg")
with gr.Column(scale=1):
gr.Markdown("### π Analysis Report")
output_text = gr.Textbox(
label="AI Analysis", lines=25, show_copy_button=True, placeholder="Analysis results will appear here...")
def clear_all():
return None, "", ""
analyze_btn.click(fn=analyze_symptoms, inputs=[image_input, symptoms_input], outputs=output_text)
clear_btn.click(fn=clear_all, outputs=[image_input, symptoms_input, output_text])
if __name__ == "__main__":
print("Starting Gradio interface...")
demo.launch(debug=True) |