Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
import os
|
5 |
+
|
6 |
+
# Get the Hugging Face token from the environment variables
|
7 |
+
hf_token = os.environ.get("HF_TOKEN")
|
8 |
+
|
9 |
+
# Initialize the tokenizer and model
|
10 |
+
# We are now using MedGemma, a 4 billion parameter instruction-tuned model
|
11 |
+
# specialized for the medical domain.
|
12 |
+
model_id = "google/medgemma-4b-it"
|
13 |
+
|
14 |
+
# Check for GPU availability and set the data type accordingly
|
15 |
+
if torch.cuda.is_available():
|
16 |
+
dtype = torch.bfloat16
|
17 |
+
else:
|
18 |
+
dtype = torch.float32
|
19 |
+
|
20 |
+
# Load the tokenizer and model from Hugging Face
|
21 |
+
try:
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_token)
|
23 |
+
model = AutoModelForCausalLM.from_pretrained(
|
24 |
+
model_id,
|
25 |
+
token=hf_token,
|
26 |
+
torch_dtype=dtype,
|
27 |
+
device_map="auto",
|
28 |
+
)
|
29 |
+
model_loaded = True
|
30 |
+
except Exception as e:
|
31 |
+
print(f"Error loading model: {e}")
|
32 |
+
model_loaded = False
|
33 |
+
|
34 |
+
# This is the core function that will take the clinical text and return a code
|
35 |
+
def get_clinical_code(clinical_text):
|
36 |
+
"""
|
37 |
+
Generates a clinical code from unstructured clinical text using the MedGemma model.
|
38 |
+
"""
|
39 |
+
if not model_loaded:
|
40 |
+
return "Error: The model could not be loaded. Please check the logs."
|
41 |
+
|
42 |
+
if not clinical_text:
|
43 |
+
return "Please enter some clinical text."
|
44 |
+
|
45 |
+
# This is our prompt template. It's designed to guide the model
|
46 |
+
# to perform the specific task of clinical coding.
|
47 |
+
# We are asking for an ICD-10 code, which is a common standard.
|
48 |
+
prompt = f"""
|
49 |
+
<start_of_turn>user
|
50 |
+
You are an expert medical coder. Your task is to analyze the following clinical text and determine the most appropriate ICD-10 code. Provide only the ICD-10 code and a brief description.
|
51 |
+
|
52 |
+
Clinical Text: "{clinical_text}"
|
53 |
+
|
54 |
+
Provide the ICD-10 code and a brief description.
|
55 |
+
<end_of_turn>
|
56 |
+
<start_of_turn>model
|
57 |
+
"""
|
58 |
+
|
59 |
+
# Prepare the input for the model
|
60 |
+
input_ids = tokenizer(prompt, return_tensors="pt").to(model.device)
|
61 |
+
|
62 |
+
# Generate the output from the model
|
63 |
+
# We are using a max length of 256 tokens which should be sufficient
|
64 |
+
# for a code and a short description.
|
65 |
+
outputs = model.generate(
|
66 |
+
**input_ids,
|
67 |
+
max_new_tokens=256,
|
68 |
+
do_sample=True,
|
69 |
+
temperature=0.7, # A lower temperature makes the output more deterministic
|
70 |
+
)
|
71 |
+
|
72 |
+
# Decode the output and clean it up
|
73 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
74 |
+
|
75 |
+
# Extract the relevant part of the response
|
76 |
+
# The model will output the prompt as well, so we need to remove it.
|
77 |
+
model_response_start = response.find("<start_of_turn>model") + len("<start_of_turn>model")
|
78 |
+
clean_response = response[model_response_start:].strip()
|
79 |
+
|
80 |
+
return clean_response
|
81 |
+
|
82 |
+
# Create the Gradio Interface
|
83 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
84 |
+
gr.Markdown(
|
85 |
+
"""
|
86 |
+
# Clinical Code Generator with Google MedGemma
|
87 |
+
Enter a piece of unstructured clinical text below, and the app will suggest an ICD-10 clinical code.
|
88 |
+
*Disclaimer: This is a demonstration and not for professional medical use.*
|
89 |
+
"""
|
90 |
+
)
|
91 |
+
|
92 |
+
with gr.Row():
|
93 |
+
# Input Textbox
|
94 |
+
input_text = gr.Textbox(
|
95 |
+
label="Unstructured Clinical Text",
|
96 |
+
placeholder="e.g., Patient presents with a severe headache and photophobia...",
|
97 |
+
lines=10
|
98 |
+
)
|
99 |
+
|
100 |
+
# Output Textbox
|
101 |
+
output_text = gr.Textbox(
|
102 |
+
label="Suggested Clinical Code (ICD-10)",
|
103 |
+
interactive=False,
|
104 |
+
lines=5
|
105 |
+
)
|
106 |
+
|
107 |
+
# Submit Button
|
108 |
+
submit_button = gr.Button("Get Clinical Code", variant="primary")
|
109 |
+
|
110 |
+
# Connect the button to the function
|
111 |
+
submit_button.click(
|
112 |
+
fn=get_clinical_code,
|
113 |
+
inputs=input_text,
|
114 |
+
outputs=output_text
|
115 |
+
)
|
116 |
+
|
117 |
+
gr.Examples(
|
118 |
+
examples=[
|
119 |
+
["The patient complains of a persistent cough and fever for the past three days. Chest X-ray shows signs of pneumonia."],
|
120 |
+
["45-year-old male with a history of hypertension presents with chest pain radiating to the left arm."],
|
121 |
+
["The patient has a history of type 2 diabetes and is here for a routine check-up. Blood sugar levels are elevated."]
|
122 |
+
],
|
123 |
+
inputs=input_text,
|
124 |
+
outputs=output_text,
|
125 |
+
fn=get_clinical_code
|
126 |
+
)
|
127 |
+
|
128 |
+
# Launch the Gradio app
|
129 |
+
if __name__ == "__main__":
|
130 |
+
demo.launch()
|