File size: 4,726 Bytes
83ff66a
77793f4
b67fca4
77793f4
83ff66a
b0565c1
83ff66a
77793f4
 
 
eef3b89
 
83ff66a
77793f4
eef3b89
77793f4
eef3b89
6ef5bdf
77793f4
83ff66a
 
77793f4
83ff66a
b67fca4
83ff66a
77793f4
b0565c1
a2c1346
cc7489e
b67fca4
77793f4
b67fca4
 
cc7489e
 
 
b0565c1
6ef5bdf
cc7489e
eef3b89
77793f4
 
 
 
eef3b89
77793f4
eef3b89
77793f4
 
eef3b89
77793f4
 
eef3b89
 
77793f4
eef3b89
 
cc7489e
77793f4
eef3b89
cc7489e
eef3b89
 
 
77793f4
 
 
 
 
 
 
cc7489e
77793f4
 
2166c8b
b47c12e
b0565c1
46668b2
 
 
cc7489e
46668b2
 
b0565c1
6ef5bdf
cc7489e
b0565c1
 
 
 
 
 
eef3b89
b0565c1
 
 
cc7489e
b0565c1
 
eef3b89
6ef5bdf
cc7489e
 
 
 
6ef5bdf
eef3b89
b0565c1
6ef5bdf
 
cc7489e
b0565c1
 
6ef5bdf
 
cc7489e
b0565c1
83ff66a
 
6ef5bdf
eef3b89
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import gradio as gr
from transformers import pipeline
from PIL import Image
import torch
import os
import spaces

# --- Configuration & Model Loading ---
# Use the pipeline, which is more robust as seen in the working example
print("Loading MedGemma model via pipeline...")
model_loaded = False
pipe = None
try:
    pipe = pipeline(
        "image-to-text",
        model="google/medgemma-4b-it",
        model_kwargs={"torch_dtype": torch.bfloat16},
        device_map="auto",
        token=os.environ.get("HF_TOKEN")
    )
    model_loaded = True
    print("Model loaded successfully!")
except Exception as e:
    print(f"Error loading model: {e}")


# --- Core Chatbot Function ---
@spaces.GPU
def symptom_checker_chat(user_input, history_for_display, new_image_upload, image_state):
    """
    Manages the conversation using the correct message format derived from the working example.
    """
    if not model_loaded:
        if user_input:
            history_for_display.append((user_input, "Error: The model could not be loaded."))
        return history_for_display, image_state, None, ""

    current_image = new_image_upload if new_image_upload is not None else image_state

    # Build the 'messages' list using the correct format for the pipeline
    messages = []
    
    # Process the conversation history
    for user_msg, assistant_msg in history_for_display:
        messages.append({"role": "user", "content": user_msg})
        if assistant_msg:
            messages.append({"role": "assistant", "content": assistant_msg})

    # Add the current user turn
    messages.append({"role": "user", "content": user_input})

    try:
        # The pipeline call is simpler. We pass the image as the main argument
        # and the text conversation as the `prompt`.
        if current_image:
            # The image goes first, the prompt kwarg contains the conversation history
            output = pipe(current_image, prompt=messages, generate_kwargs={"max_new_tokens": 512, "do_sample": True, "temperature": 0.7})
        else:
            # If no image, the pipeline can work with just the prompt
            output = pipe(prompt=messages, generate_kwargs={"max_new_tokens": 512, "do_sample": True, "temperature": 0.7})
        
        # The pipeline output structure contains the full conversation.
        # We want the content of the last message, which is the model's reply.
        clean_response = output[0]["generated_text"][-1]['content']

    except Exception as e:
        print(f"Caught a critical exception during generation: {e}", flush=True)
        clean_response = (
            "An error occurred during generation. Details:\n\n"
            f"```\n{type(e).__name__}: {e}\n```"
        )

    history_for_display.append((user_input, clean_response))
    return history_for_display, current_image, None, ""

# --- Gradio Interface ---
with gr.Blocks(theme=gr.themes.Soft(), css="footer {display: none !important}") as demo:
    gr.Markdown(
        """
        # AI Symptom Checker powered by MedGemma
        Describe your symptoms below. For visual symptoms (e.g., a skin rash), upload an image. The AI will analyze the inputs and ask clarifying questions if needed.
        """
    )
    
    image_state = gr.State(None)
    chatbot = gr.Chatbot(label="Conversation", height=500, bubble_full_width=False, avatar_images=("user.png", "bot.png"))
    chat_history = gr.State([])

    with gr.Row():
        image_box = gr.Image(type="pil", label="Upload Image of Symptom (Optional)")

    with gr.Row():
        text_box = gr.Textbox(label="Describe your symptoms...", placeholder="e.g., I have a rash on my arm that is red and itchy...", scale=4)
        submit_btn = gr.Button("Send", variant="primary", scale=1)

    def clear_all():
        return [], None, None, ""

    clear_btn = gr.Button("Start New Conversation")
    clear_btn.click(fn=clear_all, outputs=[chat_history, image_state, image_box, text_box], queue=False)
    
    def on_submit(user_input, display_history, new_image, persisted_image):
        if not user_input.strip() and not new_image:
            return display_history, persisted_image, None, ""
        return symptom_checker_chat(user_input, display_history, new_image, persisted_image)

    # Event Handlers for submit button and enter key
    submit_btn.click(
        fn=on_submit,
        inputs=[text_box, chat_history, image_box, image_state],
        outputs=[chat_history, image_state, image_box, text_box]
    )
    text_box.submit(
        fn=on_submit,
        inputs=[text_box, chat_history, image_box, image_state],
        outputs=[chat_history, image_state, image_box, text_box]
    )

if __name__ == "__main__":
    demo.launch(debug=True)