Spaces:
Running
Running
File size: 7,707 Bytes
83ff66a c5882f3 b67fca4 77793f4 83ff66a b0565c1 83ff66a 629d3ff c5882f3 83ff66a c5882f3 998c789 6ef5bdf 77793f4 83ff66a c5882f3 83ff66a 998c789 b67fca4 83ff66a b3f457b 998c789 909352f b67fca4 b3f457b b67fca4 b3f457b 77793f4 c5882f3 909352f f96636d 909352f 60665db d305e52 f0fe4ce 909352f b3f457b f0fe4ce 3d0f6df f0fe4ce b3f457b 49df0b6 f0fe4ce b3f457b 6091659 3d0f6df 6091659 b3f457b 6091659 f0fe4ce 3d0f6df b3f457b 77793f4 3d0f6df 909352f b3f457b 909352f b3f457b 629d3ff b3f457b 629d3ff b3f457b 629d3ff b3f457b 629d3ff 909352f 998c789 b3f457b 3d0f6df b3f457b a0905ae b3f457b a0905ae b3f457b a0905ae 998c789 b3f457b a0905ae 909352f b3f457b 629d3ff b3f457b a0905ae 909352f b3f457b 629d3ff b3f457b a0905ae b3f457b a0905ae b3f457b 49df0b6 629d3ff 49df0b6 c5882f3 9c4076b 998c789 ed3187b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import gradio as gr
from transformers import pipeline
from PIL import Image
import torch
import os
import spaces
# --- Initialize the Model Pipeline (No changes) ---
print("Loading MedGemma model...")
try:
pipe = pipeline(
"image-text-to-text",
model="google/medgemma-4b-it",
torch_dtype=torch.bfloat16,
device_map="auto",
token=os.environ.get("HF_TOKEN")
)
model_loaded = True
print("Model loaded successfully!")
except Exception as e:
model_loaded = False
print(f"Error loading model: {e}")
# --- Core CONVERSATIONAL Logic (Modified for Streaming) ---
@spaces.GPU()
def handle_conversation_turn(user_input: str, user_image: Image.Image, history: list):
"""
Manages a single conversation turn and streams the AI response back.
This function is now a Python generator.
"""
if not model_loaded:
history[-1] = (user_input, "Error: The AI model is not loaded.")
yield history, history, None
return
try:
system_prompt = (
"You are an expert, empathetic AI medical assistant conducting a virtual consultation. "
"Your primary goal is to ask clarifying questions to understand the user's symptoms thoroughly. "
"Do NOT provide a diagnosis or a list of possibilities right away. Ask only one or two focused questions per turn. "
"If the user provides an image, your first step is to analyze it from an expert perspective. Briefly describe the key findings from the image. "
"Then, use this analysis to ask relevant follow-up questions about the user's symptoms or medical history to better understand the context. "
"For example, after seeing a rash, you might say, 'I see a reddish rash with well-defined borders on the forearm. To help me understand more, could you tell me when you first noticed this? Is it itchy, painful, or does it have any other sensation?'"
"After several turns of asking questions, when you feel you have gathered enough information, you must FIRST state that you are ready to provide a summary. "
"THEN, in the SAME response, provide a list of possible conditions, your reasoning, and a clear, actionable next-steps plan."
)
generation_args = {"max_new_tokens": 1024, "do_sample": True, "temperature": 0.7}
ai_response = ""
if user_image:
# ... (logic remains the same)
messages = [{"role": "system", "content": [{"type": "text", "text": system_prompt}]}]
for user_msg, assistant_msg in history[:-1]:
messages.append({"role": "user", "content": [{"type": "text", "text": user_msg}]})
if assistant_msg: messages.append({"role": "assistant", "content": [{"type": "text", "text": assistant_msg}]})
latest_user_content = [{"type": "text", "text": user_input}, {"type": "image", "image": user_image}]
messages.append({"role": "user", "content": latest_user_content})
output = pipe(text=messages, **generation_args)
ai_response = output[0]["generated_text"][-1]["content"]
else:
# ... (logic remains the same)
prompt_parts = [f"<start_of_turn>system\n{system_prompt}"]
for user_msg, assistant_msg in history[:-1]:
prompt_parts.append(f"<start_of_turn>user\n{user_msg}")
if assistant_msg: prompt_parts.append(f"<start_of_turn>model\n{assistant_msg}")
prompt_parts.append(f"<start_of_turn>user\n{user_input}")
prompt_parts.append("<start_of_turn>model")
prompt = "\n".join(prompt_parts)
output = pipe(prompt, **generation_args)
full_text = output[0]["generated_text"]
ai_response = full_text.split("<start_of_turn>model")[-1].strip()
# Stream the AI response back to the chatbot
history[-1] = (user_input, "")
for character in ai_response:
history[-1] = (user_input, history[-1][1] + character)
yield history, history, None
except Exception as e:
error_message = f"An error occurred: {str(e)}"
history[-1] = (user_input, error_message)
print(f"An exception occurred during conversation turn: {type(e).__name__}: {e}")
yield history, history, None
# --- UI MODIFICATION: Professional CSS for the chat interface ---
css = """
/* Make the main app container fill the screen height */
div.gradio-container { height: 100vh !important; }
/* Main chat area styling */
#chat-container { flex-grow: 1; overflow-y: auto; padding-bottom: 120px; }
/* Sticky footer for the input bar */
#footer-container {
position: fixed !important; bottom: 0; left: 0; width: 100%;
background-color: #e0f2fe !important; /* Light Sky Blue background */
border-top: 1px solid #bae6fd !important;
padding: 10px; z-index: 1000;
}
/* White, rounded textbox */
#user-textbox textarea {
background-color: #ffffff !important;
border: 1px solid #cbd5e1 !important;
border-radius: 8px !important;
}
/* Style the image upload button */
#image-upload-btn { border: 1px dashed #9ca3af !important; border-radius: 8px !important; }
"""
with gr.Blocks(theme=gr.themes.Soft(), title="AI Doctor Consultation", css=css) as demo:
conversation_history = gr.State([])
with gr.Column(elem_id="chat-container"):
chatbot_display = gr.Chatbot(label="Consultation", show_copy_button=True, bubble_full_width=False)
with gr.Column(elem_id="footer-container"):
with gr.Row():
image_input = gr.Image(elem_id="image-upload-btn", label="Image", type="pil", height=80, show_label=False, container=False, scale=1)
user_textbox = gr.Textbox(
elem_id="user-textbox",
label="Your Message",
placeholder="Type your message, or upload an image...",
show_label=False, scale=4, container=False
)
send_button = gr.Button("Send", variant="primary", scale=1)
with gr.Row():
clear_button = gr.Button("๐๏ธ Start New Consultation")
# This new function handles the full UX flow: instant feedback + streaming AI response
def submit_message_and_stream(user_input: str, user_image: Image.Image, history: list):
if not user_input.strip() and user_image is None:
# Do nothing if the input is empty
return history, history, None
# 1. Instantly add the user's message to the chat UI
history.append((user_input, None))
yield history, history, None
# 2. Start the generator to get the AI's response stream
for updated_history, new_state, cleared_image in handle_conversation_turn(user_input, user_image, history):
yield updated_history, new_state, cleared_image
# --- Event Handlers ---
send_button.click(
fn=submit_message_and_stream,
inputs=[user_textbox, image_input, conversation_history],
outputs=[chatbot_display, conversation_history, image_input],
).then(lambda: "", outputs=user_textbox) # Clear textbox after submission
user_textbox.submit(
fn=submit_message_and_stream,
inputs=[user_textbox, image_input, conversation_history],
outputs=[chatbot_display, conversation_history, image_input],
).then(lambda: "", outputs=user_textbox)
clear_button.click(
lambda: ([], [], None, ""),
outputs=[chatbot_display, conversation_history, image_input, user_textbox]
)
if __name__ == "__main__":
print("Starting Gradio interface...")
demo.launch(debug=True) |