File size: 8,612 Bytes
83ff66a
77793f4
b67fca4
77793f4
83ff66a
b0565c1
83ff66a
77793f4
 
 
83ff66a
77793f4
 
 
 
6ef5bdf
77793f4
83ff66a
 
77793f4
83ff66a
77793f4
b67fca4
83ff66a
77793f4
b0565c1
a2c1346
cc7489e
b67fca4
77793f4
b67fca4
 
cc7489e
 
 
b0565c1
6ef5bdf
cc7489e
 
77793f4
 
 
 
6ef5bdf
77793f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc7489e
77793f4
 
cc7489e
77793f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc7489e
77793f4
 
2166c8b
77793f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0565c1
77793f4
 
46668b2
b67fca4
cc7489e
 
bd084e6
 
 
b67fca4
 
46668b2
b47c12e
46668b2
 
 
 
 
cc7489e
 
b47c12e
 
cc7489e
b0565c1
b47c12e
b0565c1
46668b2
 
 
cc7489e
46668b2
 
b0565c1
cc7489e
6ef5bdf
 
cc7489e
 
b0565c1
 
 
 
 
 
46668b2
b0565c1
 
cc7489e
b0565c1
cc7489e
b0565c1
 
 
 
cc7489e
b0565c1
 
6ef5bdf
cc7489e
 
 
 
 
6ef5bdf
cc7489e
b0565c1
6ef5bdf
 
cc7489e
b0565c1
 
 
6ef5bdf
 
cc7489e
b0565c1
83ff66a
 
6ef5bdf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import gradio as gr
from transformers import pipeline
from PIL import Image
import torch
import os
import spaces

# --- Configuration & Model Loading ---
# Use the pipeline, which is more robust as seen in the working example
print("Loading MedGemma model via pipeline...")
try:
    pipe = pipeline(
        "image-to-text", # The correct task for this model
        model="google/medgemma-4b-it",
        model_kwargs={"torch_dtype": torch.bfloat16}, # Pass dtype here
        device_map="auto",
        token=os.environ.get("HF_TOKEN")
    )
    model_loaded = True
    print("Model loaded successfully!")
except Exception as e:
    model_loaded = False
    print(f"Error loading model: {e}")


# --- Core Chatbot Function ---
@spaces.GPU
def symptom_checker_chat(user_input, history_for_display, new_image_upload, image_state):
    """
    Manages the conversation using the correct message format derived from the working example.
    """
    if not model_loaded:
        if user_input:
            history_for_display.append((user_input, "Error: The model could not be loaded."))
        return history_for_display, image_state, None, ""

    current_image = new_image_upload if new_image_upload is not None else image_state

    # --- THE CORRECT IMPLEMENTATION ---
    # Build the 'messages' list using the exact format from the working X-ray app.
    messages = []
    
    # Optional: System prompt can be added here if needed, following the same format.
    
    # Process the conversation history
    for user_msg, assistant_msg in history_for_display:
        # For history turns, we assume the image was part of the first turn (handled below).
        # So, all historical messages are just text.
        messages.append({"role": "user", "content": [{"type": "text", "text": user_msg}]})
        if assistant_msg:
            messages.append({"role": "assistant", "content": [{"type": "text", "text": assistant_msg}]})

    # Add the current user turn
    current_user_content = [{"type": "text", "text": user_input}]
    # If there's an image for the conversation, add it to the first user turn's content
    if current_image is not None and not history_for_display: # Only for the very first message
         current_user_content.append({"type": "image"}) # The pipeline handles the image object separately

    messages.append({"role": "user", "content": current_user_content})

    try:
        # Generate analysis using the pipeline. It's much simpler.
        # We pass the image separately if it exists.
        if current_image:
            output = pipe(current_image, prompt=messages, generate_kwargs={"max_new_tokens": 512})
        else:
            # If no image, the pipeline can work with just the prompt
            output = pipe(prompt=messages, generate_kwargs={"max_new_tokens": 512})
        
        # The pipeline's output structure can be complex; we need to extract the final text.
        # It's usually in the last dictionary of the generated list.
        result = output[0]["generated_text"]
        if isinstance(result, list):
            # Find the last text content from the model's response
            clean_response = next((item['text'] for item in reversed(result) if item['type'] == 'text'), "Sorry, I couldn't generate a response.")
        else: # Simpler text-only output
            clean_response = result

    except Exception as e:
        print(f"Caught a critical exception during generation: {e}", flush=True)
        clean_response = (
            "An error occurred during generation. Details:\n\n"
            f"```\n{type(e).__name__}: {e}\n```"
        )

    history_for_display.append((user_input, clean_response))
    return history_for_display, current_image, None, ""

# --- Gradio Interface (Mostly unchanged) ---
with gr.Blocks(theme=gr.themes.Soft(), css="footer {display: none !important}") as demo:
    gr.Markdown(
        """
        # AI Symptom Checker powered by MedGemma
        Describe your symptoms below. For visual symptoms (e.g., a skin rash), upload an image. The AI will analyze the inputs and ask clarifying questions if needed.
        """
    )
    
    image_state = gr.State(None)
    chatbot = gr.Chatbot(label="Conversation", height=500, bubble_full_width=False)
    chat_history = gr.State([])

    with gr.Row():
        image_box = gr.Image(type="pil", label="Upload Image of Symptom (Optional)")

    with gr.Row():
        text_box = gr.Textbox(label="Describe your symptoms...", placeholder="e.g., I have a rash on my arm...", scale=4)
        submit_btn = gr.Button("Send", variant="primary", scale=1)

    def clear_all():
        return [], None, None, ""

    clear_btn = gr.Button("Start New Conversation")
    clear_btn.click(fn=clear_all, outputs=[chat_history, image_state, image_box, text_box], queue=False)
    
    def on_submit(user_input, display_history, new_image, persisted_image):
        if not user_input.strip() and not new_image:
            return display_history, persisted_image, None, ""
        # The display history IS our history state now
        return symptom_checker_chat(user_input, display_history, new_image, persisted_image)

    submit_btn.click(
        fn=on_submit,
        inputs=[text_box, chat_history, image_box, image_state],
        outputs=[chat_history, image_state, image_box, text_box]
    )
    text_box.submit(
        fn=on_submit,
        inputs=[text_box, chat_history, image_box, image_state],
        outputs=[chat_history, image_state, image_box, text_box]
    )

if __name__ == "__main__":
    demo.launch(debug=True)
        # Generate the response
        outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True, temperature=0.7)
        
        # Decode only the newly generated part
        input_token_len = inputs["input_ids"].shape[1]
        generated_tokens = outputs[:, input_token_len:]
        clean_response = processor.decode(generated_tokens[0], skip_special_tokens=True).strip()

    except Exception as e:
        print(f"Caught a critical exception during generation: {e}", flush=True)
        # Display the real error in the UI for easier debugging
        clean_response = (
            "An error occurred during generation. This is the technical details:\n\n"
            f"```\n{type(e).__name__}: {e}\n```"
        )

    # Update the display history
    history_for_display.append((user_input, clean_response))

    # Return all updated values
    return history_for_display, current_image, None, ""

# --- Gradio Interface ---
with gr.Blocks(theme=gr.themes.Soft(), css="footer {display: none !important}") as demo:
    gr.Markdown(
        """
        # AI Symptom Checker powered by MedGemma
        Describe your symptoms below. For visual symptoms (e.g., a skin rash), upload an image. The AI will analyze the inputs and ask clarifying questions if needed.
        """
    )
    
    # State to hold the image across an entire conversation
    image_state = gr.State(None)

    chatbot = gr.Chatbot(label="Conversation", height=500, bubble_full_width=False, avatar_images=("user.png", "bot.png"))
    # The history state will now just be for display, a simple list of (text, text) tuples.
    chat_history = gr.State([])

    with gr.Row():
        image_box = gr.Image(type="pil", label="Upload Image of Symptom (Optional)")

    with gr.Row():
        text_box = gr.Textbox(label="Describe your symptoms...", placeholder="e.g., I have a rash on my arm...", scale=4)
        submit_btn = gr.Button("Send", variant="primary", scale=1)

    # The clear function now resets all three states
    def clear_all():
        return [], None, None, ""

    clear_btn = gr.Button("Start New Conversation")
    clear_btn.click(
        fn=clear_all, 
        outputs=[chat_history, image_state, image_box, text_box], 
        queue=False
    )
    
    # The submit handler function
    def on_submit(user_input, display_history, new_image, persisted_image):
        if not user_input.strip() and not new_image:
            return display_history, persisted_image, None, ""
        return symptom_checker_chat(user_input, display_history, new_image, persisted_image)

    # Wire up the events
    submit_btn.click(
        fn=on_submit,
        inputs=[text_box, chat_history, image_box, image_state],
        outputs=[chat_history, image_state, image_box, text_box]
    )
        
    text_box.submit(
        fn=on_submit,
        inputs=[text_box, chat_history, image_box, image_state],
        outputs=[chat_history, image_state, image_box, text_box]
    )

if __name__ == "__main__":
    demo.launch(debug=True)