Spaces:
Sleeping
Sleeping
File size: 6,272 Bytes
83ff66a 77793f4 b67fca4 77793f4 83ff66a b0565c1 83ff66a 998c789 83ff66a 77793f4 998c789 77793f4 998c789 6ef5bdf 77793f4 83ff66a 77793f4 83ff66a 998c789 b67fca4 83ff66a 60665db 998c789 b67fca4 60665db b67fca4 998c789 bc69d2f 998c789 77793f4 60665db bc69d2f 60665db 998c789 60665db bc69d2f 60665db ea22a67 60665db 998c789 60665db bc69d2f 60665db ea22a67 3d9624f 60665db ea22a67 3d9624f 60665db ea22a67 60665db 998c789 77793f4 3d9624f 60665db 998c789 ea22a67 998c789 9c4076b 998c789 ea22a67 998c789 ea22a67 998c789 ea22a67 998c789 9c4076b 998c789 9c4076b ea22a67 9c4076b 998c789 ea22a67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import gradio as gr
from transformers import pipeline
from PIL import Image
import torch
import os
import spaces
# --- Initialize the Model Pipeline ---
print("Loading MedGemma model...")
try:
pipe = pipeline(
"image-text-to-text",
model="google/medgemma-4b-it",
torch_dtype=torch.bfloat16,
device_map="auto",
token=os.environ.get("HF_TOKEN")
)
model_loaded = True
print("Model loaded successfully!")
except Exception as e:
model_loaded = False
print(f"Error loading model: {e}")
# --- Core Analysis Function (Corrected) ---
@spaces.GPU()
def analyze_symptoms(symptom_image, symptoms_text):
"""
Analyzes user's symptoms using the correct prompt format for MedGemma.
"""
if not model_loaded:
return "Error: The AI model could not be loaded. Please check the Space logs."
# Standardize input to avoid issues with None or whitespace
symptoms_text = symptoms_text.strip() if symptoms_text else ""
if symptom_image is None and not symptoms_text:
return "Please describe your symptoms or upload an image for analysis."
try:
# --- CORRECTED PROMPT LOGIC ---
# MedGemma expects a specific prompt format with special tokens.
# We build this prompt string dynamically.
# This is the instruction part of the prompt
instruction = (
"You are an expert, empathetic AI medical assistant. "
"Analyze the potential medical condition based on the following information. "
"Provide a list of possible conditions, your reasoning, and a clear, "
"actionable next-steps plan. Start your analysis by describing the user-provided "
"information (text and/or image)."
)
# Build the final prompt based on user inputs
prompt_parts = ["<start_of_turn>user"]
if symptoms_text:
prompt_parts.append(symptoms_text)
# The <image> token is a placeholder that tells the model where to "look" at the image.
if symptom_image:
prompt_parts.append("<image>")
prompt_parts.append(instruction)
prompt_parts.append("<start_of_turn>model")
prompt = "\n".join(prompt_parts)
print("Generating pipeline output...")
# --- CORRECTED PIPELINE CALL ---
# The pipeline expects the prompt string and an 'images' argument (if an image is provided).
# We create a dictionary for keyword arguments to pass to the pipeline.
pipeline_kwargs = {
"max_new_tokens": 512,
"do_sample": True,
"temperature": 0.7
}
# The `images` argument should be a list of PIL Images.
if symptom_image:
output = pipe(prompt, images=[symptom_image], **pipeline_kwargs)
else:
# If no image is provided, we do not include the `images` argument in the call.
output = pipe(prompt, **pipeline_kwargs)
print("Pipeline Output:", output)
# --- SIMPLIFIED OUTPUT PROCESSING ---
# The pipeline returns a list with one dictionary. The result is in the 'generated_text' key.
if output and isinstance(output, list) and 'generated_text' in output[0]:
# We extract just the model's response part of the generated text.
full_text = output[0]['generated_text']
# The model output includes the prompt, so we split it to get only the new part.
result = full_text.split("<start_of_turn>model\n")[-1]
else:
result = "The model did not return a valid response. Please try again."
disclaimer = "\n\n***Disclaimer: I am an AI assistant and not a medical professional. This is not a diagnosis. Please consult a doctor for any health concerns.***"
return result + disclaimer
except Exception as e:
print(f"An exception occurred during analysis: {type(e).__name__}: {e}")
# Provide a more user-friendly error message
return f"An error occurred during analysis. Please check the logs for details: {str(e)}"
# --- Create the Gradio Interface (No changes needed here) ---
with gr.Blocks(theme=gr.themes.Soft(), title="AI Symptom Analyzer") as demo:
gr.HTML("""
<div style="text-align: center; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; padding: 2rem; border-radius: 10px; margin-bottom: 2rem;">
<h1>π©Ί AI Symptom Analyzer</h1>
<p>Advanced symptom analysis powered by Google's MedGemma AI</p>
</div>
""")
gr.HTML("""
<div style="background-color: #fff3cd; border: 1px solid #ffeaa7; border-radius: 8px; padding: 1rem; margin: 1rem 0; color: #856404;">
<strong>β οΈ Medical Disclaimer:</strong> This AI tool is for informational purposes only and is not a substitute for professional medical diagnosis or treatment.
</div>
""")
with gr.Row(equal_height=True):
with gr.Column(scale=1):
gr.Markdown("### 1. Describe Your Symptoms")
symptoms_input = gr.Textbox(
label="Symptoms",
placeholder="e.g., 'I have a rash on my arm that is red and itchy...'", lines=5)
gr.Markdown("### 2. Upload an Image (Optional)")
image_input = gr.Image(label="Symptom Image", type="pil", height=300)
with gr.Row():
clear_btn = gr.Button("ποΈ Clear All", variant="secondary")
analyze_btn = gr.Button("π Analyze Symptoms", variant="primary", size="lg")
with gr.Column(scale=1):
gr.Markdown("### π Analysis Report")
output_text = gr.Textbox(
label="AI Analysis", lines=25, show_copy_button=True, placeholder="Analysis results will appear here...")
def clear_all():
return None, "", ""
analyze_btn.click(fn=analyze_symptoms, inputs=[image_input, symptoms_input], outputs=output_text)
clear_btn.click(fn=clear_all, outputs=[image_input, symptoms_input, output_text])
if __name__ == "__main__":
print("Starting Gradio interface...")
demo.launch(debug=True) |