Spaces:
Running
Running
File size: 5,273 Bytes
83ff66a 77793f4 b67fca4 77793f4 83ff66a b0565c1 83ff66a 77793f4 eef3b89 83ff66a 77793f4 eef3b89 77793f4 eef3b89 6ef5bdf 77793f4 83ff66a 77793f4 83ff66a b67fca4 83ff66a 77793f4 b0565c1 5296e2a cc7489e b67fca4 5296e2a b67fca4 cc7489e b0565c1 6ef5bdf cc7489e 5296e2a 77793f4 5296e2a 77793f4 5296e2a 77793f4 5296e2a cc7489e 5296e2a eef3b89 77793f4 cc7489e 5296e2a 77793f4 2166c8b b47c12e b0565c1 46668b2 5296e2a 46668b2 b0565c1 6ef5bdf 5296e2a b0565c1 eef3b89 b0565c1 cc7489e b0565c1 eef3b89 6ef5bdf cc7489e 5296e2a 6ef5bdf b0565c1 6ef5bdf cc7489e b0565c1 6ef5bdf cc7489e b0565c1 83ff66a 6ef5bdf eef3b89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
import gradio as gr
from transformers import pipeline
from PIL import Image
import torch
import os
import spaces
# --- Configuration & Model Loading ---
# Use the pipeline, which is more robust as seen in the working example
print("Loading MedGemma model via pipeline...")
model_loaded = False
pipe = None
try:
pipe = pipeline(
"image-to-text",
model="google/medgemma-4b-it",
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
token=os.environ.get("HF_TOKEN")
)
model_loaded = True
print("Model loaded successfully!")
except Exception as e:
print(f"Error loading model: {e}")
# --- Core Chatbot Function ---
@spaces.GPU(duration=120) # Increase timeout duration for long first-time generation
def symptom_checker_chat(user_input, history_for_display, new_image_upload, image_state):
"""
Manages the conversation by embedding the image directly into the message structure,
which is the correct way to use this pipeline and prevents hanging.
"""
if not model_loaded:
if user_input:
history_for_display.append((user_input, "Error: The model could not be loaded."))
return history_for_display, image_state, None, ""
current_image = new_image_upload if new_image_upload is not None else image_state
# --- THE CORRECT IMPLEMENTATION ---
# Build the 'messages' list by embedding the image object directly inside the content.
messages = []
# Reconstruct the conversation from history.
for i, (user_msg, assistant_msg) in enumerate(history_for_display):
# We define the content for the user's turn
user_content = [{"type": "text", "text": user_msg}]
# If it's the very first turn of the conversation AND an image exists for it,
# we embed the image object here.
if i == 0 and current_image is not None:
user_content.append({"type": "image", "image": current_image})
messages.append({"role": "user", "content": user_content})
if assistant_msg:
# The assistant's response is always text
messages.append({"role": "assistant", "content": [{"type": "text", "text": assistant_msg}]})
# Add the current user's input to the conversation
current_user_content = [{"type": "text", "text": user_input}]
# If this is the start of a NEW conversation (no history) AND an image was just uploaded,
# embed the image object in this first turn.
if not history_for_display and current_image is not None:
current_user_content.append({"type": "image", "image": current_image})
messages.append({"role": "user", "content": current_user_content})
try:
# The pipeline call is now simple and correct.
# It ONLY takes the `messages` structure. The pipeline unpacks it internally.
output = pipe(messages, max_new_tokens=512, do_sample=True, temperature=0.7)
# The pipeline returns the full conversation. The last message is the model's reply.
clean_response = output[0]["generated_text"][-1]['content']
except Exception as e:
print(f"Caught a critical exception during generation: {e}", flush=True)
clean_response = (
"An error occurred during generation. Details:\n\n"
f"```\n{type(e).__name__}: {e}\n```"
)
# Update history and return values for Gradio UI
history_for_display.append((user_input, clean_response))
return history_for_display, current_image, None, ""
# --- Gradio Interface ---
with gr.Blocks(theme=gr.themes.Soft(), css="footer {display: none !important}") as demo:
gr.Markdown(
"""
# AI Symptom Checker powered by MedGemma
Describe your symptoms below. For visual symptoms (e.g., a skin rash), upload an image.
"""
)
image_state = gr.State(None)
chatbot = gr.Chatbot(label="Conversation", height=500, bubble_full_width=False)
chat_history = gr.State([])
with gr.Row():
image_box = gr.Image(type="pil", label="Upload Image of Symptom (Optional)")
with gr.Row():
text_box = gr.Textbox(label="Describe your symptoms...", placeholder="e.g., I have a rash on my arm that is red and itchy...", scale=4)
submit_btn = gr.Button("Send", variant="primary", scale=1)
def clear_all():
return [], None, None, ""
clear_btn = gr.Button("Start New Conversation")
clear_btn.click(fn=clear_all, outputs=[chat_history, image_state, image_box, text_box], queue=False)
def on_submit(user_input, display_history, new_image, persisted_image):
if not user_input.strip() and not new_image:
return display_history, persisted_image, None, ""
return symptom_checker_chat(user_input, display_history, new__image, persisted_image)
submit_btn.click(
fn=on_submit,
inputs=[text_box, chat_history, image_box, image_state],
outputs=[chat_history, image_state, image_box, text_box]
)
text_box.submit(
fn=on_submit,
inputs=[text_box, chat_history, image_box, image_state],
outputs=[chat_history, image_state, image_box, text_box]
)
if __name__ == "__main__":
demo.launch(debug=True)
|