File size: 5,273 Bytes
83ff66a
77793f4
b67fca4
77793f4
83ff66a
b0565c1
83ff66a
77793f4
 
 
eef3b89
 
83ff66a
77793f4
eef3b89
77793f4
eef3b89
6ef5bdf
77793f4
83ff66a
 
77793f4
83ff66a
b67fca4
83ff66a
77793f4
b0565c1
5296e2a
cc7489e
b67fca4
5296e2a
 
b67fca4
 
cc7489e
 
 
b0565c1
6ef5bdf
cc7489e
5296e2a
 
77793f4
 
5296e2a
 
 
 
 
 
 
 
 
 
 
77793f4
5296e2a
 
 
 
 
 
 
 
 
 
 
77793f4
 
5296e2a
 
 
cc7489e
5296e2a
eef3b89
77793f4
 
 
 
 
 
 
cc7489e
5296e2a
77793f4
 
2166c8b
b47c12e
b0565c1
46668b2
 
 
5296e2a
46668b2
 
b0565c1
6ef5bdf
5296e2a
b0565c1
 
 
 
 
 
eef3b89
b0565c1
 
 
cc7489e
b0565c1
 
eef3b89
6ef5bdf
cc7489e
 
 
5296e2a
6ef5bdf
b0565c1
6ef5bdf
 
cc7489e
b0565c1
 
6ef5bdf
 
cc7489e
b0565c1
83ff66a
 
6ef5bdf
eef3b89
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import gradio as gr
from transformers import pipeline
from PIL import Image
import torch
import os
import spaces

# --- Configuration & Model Loading ---
# Use the pipeline, which is more robust as seen in the working example
print("Loading MedGemma model via pipeline...")
model_loaded = False
pipe = None
try:
    pipe = pipeline(
        "image-to-text",
        model="google/medgemma-4b-it",
        model_kwargs={"torch_dtype": torch.bfloat16},
        device_map="auto",
        token=os.environ.get("HF_TOKEN")
    )
    model_loaded = True
    print("Model loaded successfully!")
except Exception as e:
    print(f"Error loading model: {e}")


# --- Core Chatbot Function ---
@spaces.GPU(duration=120) # Increase timeout duration for long first-time generation
def symptom_checker_chat(user_input, history_for_display, new_image_upload, image_state):
    """
    Manages the conversation by embedding the image directly into the message structure,
    which is the correct way to use this pipeline and prevents hanging.
    """
    if not model_loaded:
        if user_input:
            history_for_display.append((user_input, "Error: The model could not be loaded."))
        return history_for_display, image_state, None, ""

    current_image = new_image_upload if new_image_upload is not None else image_state

    # --- THE CORRECT IMPLEMENTATION ---
    # Build the 'messages' list by embedding the image object directly inside the content.
    messages = []
    
    # Reconstruct the conversation from history.
    for i, (user_msg, assistant_msg) in enumerate(history_for_display):
        # We define the content for the user's turn
        user_content = [{"type": "text", "text": user_msg}]
        # If it's the very first turn of the conversation AND an image exists for it,
        # we embed the image object here.
        if i == 0 and current_image is not None:
            user_content.append({"type": "image", "image": current_image})
        
        messages.append({"role": "user", "content": user_content})
        
        if assistant_msg:
            # The assistant's response is always text
            messages.append({"role": "assistant", "content": [{"type": "text", "text": assistant_msg}]})

    # Add the current user's input to the conversation
    current_user_content = [{"type": "text", "text": user_input}]
    # If this is the start of a NEW conversation (no history) AND an image was just uploaded,
    # embed the image object in this first turn.
    if not history_for_display and current_image is not None:
        current_user_content.append({"type": "image", "image": current_image})
    
    messages.append({"role": "user", "content": current_user_content})

    try:
        # The pipeline call is now simple and correct.
        # It ONLY takes the `messages` structure. The pipeline unpacks it internally.
        output = pipe(messages, max_new_tokens=512, do_sample=True, temperature=0.7)
        
        # The pipeline returns the full conversation. The last message is the model's reply.
        clean_response = output[0]["generated_text"][-1]['content']

    except Exception as e:
        print(f"Caught a critical exception during generation: {e}", flush=True)
        clean_response = (
            "An error occurred during generation. Details:\n\n"
            f"```\n{type(e).__name__}: {e}\n```"
        )

    # Update history and return values for Gradio UI
    history_for_display.append((user_input, clean_response))
    return history_for_display, current_image, None, ""

# --- Gradio Interface ---
with gr.Blocks(theme=gr.themes.Soft(), css="footer {display: none !important}") as demo:
    gr.Markdown(
        """
        # AI Symptom Checker powered by MedGemma
        Describe your symptoms below. For visual symptoms (e.g., a skin rash), upload an image.
        """
    )
    
    image_state = gr.State(None)
    chatbot = gr.Chatbot(label="Conversation", height=500, bubble_full_width=False)
    chat_history = gr.State([])

    with gr.Row():
        image_box = gr.Image(type="pil", label="Upload Image of Symptom (Optional)")

    with gr.Row():
        text_box = gr.Textbox(label="Describe your symptoms...", placeholder="e.g., I have a rash on my arm that is red and itchy...", scale=4)
        submit_btn = gr.Button("Send", variant="primary", scale=1)

    def clear_all():
        return [], None, None, ""

    clear_btn = gr.Button("Start New Conversation")
    clear_btn.click(fn=clear_all, outputs=[chat_history, image_state, image_box, text_box], queue=False)
    
    def on_submit(user_input, display_history, new_image, persisted_image):
        if not user_input.strip() and not new_image:
            return display_history, persisted_image, None, ""
        return symptom_checker_chat(user_input, display_history, new__image, persisted_image)

    submit_btn.click(
        fn=on_submit,
        inputs=[text_box, chat_history, image_box, image_state],
        outputs=[chat_history, image_state, image_box, text_box]
    )
    text_box.submit(
        fn=on_submit,
        inputs=[text_box, chat_history, image_box, image_state],
        outputs=[chat_history, image_state, image_box, text_box]
    )

if __name__ == "__main__":
    demo.launch(debug=True)