Spaces:
Sleeping
Sleeping
File size: 5,701 Bytes
83ff66a 77793f4 b67fca4 77793f4 83ff66a b0565c1 83ff66a 1fa102b 998c789 83ff66a 77793f4 998c789 77793f4 998c789 6ef5bdf 77793f4 83ff66a 77793f4 83ff66a 998c789 b67fca4 83ff66a 60665db 998c789 b67fca4 1fa102b b67fca4 998c789 bc69d2f 998c789 77793f4 1fa102b 60665db bc69d2f 60665db 998c789 60665db ea22a67 3d9624f 60665db 1fa102b 60665db 1fa102b 60665db 1fa102b 60665db ea22a67 3d9624f 1fa102b 60665db ea22a67 60665db 998c789 77793f4 3d9624f 60665db 998c789 1fa102b 998c789 9c4076b 998c789 ea22a67 998c789 ea22a67 998c789 ea22a67 998c789 9c4076b 998c789 9c4076b ea22a67 9c4076b 998c789 ea22a67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
import gradio as gr
from transformers import pipeline
from PIL import Image
import torch
import os
import spaces
# --- Initialize the Model Pipeline (No changes here) ---
print("Loading MedGemma model...")
try:
pipe = pipeline(
"image-text-to-text",
model="google/medgemma-4b-it",
torch_dtype=torch.bfloat16,
device_map="auto",
token=os.environ.get("HF_TOKEN")
)
model_loaded = True
print("Model loaded successfully!")
except Exception as e:
model_loaded = False
print(f"Error loading model: {e}")
# --- Core Analysis Function (Corrected) ---
@spaces.GPU()
def analyze_symptoms(symptom_image, symptoms_text):
"""
Analyzes user's symptoms using the correct prompt format and keyword arguments for MedGemma.
"""
if not model_loaded:
return "Error: The AI model could not be loaded. Please check the Space logs."
symptoms_text = symptoms_text.strip() if symptoms_text else ""
if symptom_image is None and not symptoms_text:
return "Please describe your symptoms or upload an image for analysis."
try:
# --- PROMPT LOGIC (Unchanged) ---
instruction = (
"You are an expert, empathetic AI medical assistant. "
"Analyze the potential medical condition based on the following information. "
"Provide a list of possible conditions, your reasoning, and a clear, "
"actionable next-steps plan. Start your analysis by describing the user-provided "
"information (text and/or image)."
)
prompt_parts = ["<start_of_turn>user"]
if symptoms_text:
prompt_parts.append(symptoms_text)
if symptom_image:
prompt_parts.append("<image>")
prompt_parts.append(instruction)
prompt_parts.append("<start_of_turn>model")
prompt = "\n".join(prompt_parts)
print("Generating pipeline output...")
# --- CORRECTED & ROBUST PIPELINE CALL ---
# We build a dictionary of all arguments to pass to the pipeline.
# This avoids the TypeError by ensuring all arguments are passed explicitly by keyword.
pipeline_args = {
"prompt": prompt,
"max_new_tokens": 512,
"do_sample": True,
"temperature": 0.7
}
# The `images` argument should be a list of PIL Images.
# We only add it to our arguments dictionary if an image is provided.
if symptom_image:
pipeline_args["images"] = [symptom_image]
# We use the ** syntax to unpack the dictionary into keyword arguments.
# This results in a call like: pipe(prompt=..., images=..., max_new_tokens=...)
output = pipe(**pipeline_args)
print("Pipeline Output:", output)
# --- SIMPLIFIED OUTPUT PROCESSING (Unchanged) ---
if output and isinstance(output, list) and 'generated_text' in output[0]:
full_text = output[0]['generated_text']
result = full_text.split("<start_of_turn>model\n")[-1]
else:
result = "The model did not return a valid response. Please try again."
disclaimer = "\n\n***Disclaimer: I am an AI assistant and not a medical professional. This is not a diagnosis. Please consult a doctor for any health concerns.***"
return result + disclaimer
except Exception as e:
print(f"An exception occurred during analysis: {type(e).__name__}: {e}")
return f"An error occurred during analysis. Please check the logs for details: {str(e)}"
# --- Gradio Interface (No changes needed) ---
with gr.Blocks(theme=gr.themes.Soft(), title="AI Symptom Analyzer") as demo:
gr.HTML("""
<div style="text-align: center; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; padding: 2rem; border-radius: 10px; margin-bottom: 2rem;">
<h1>π©Ί AI Symptom Analyzer</h1>
<p>Advanced symptom analysis powered by Google's MedGemma AI</p>
</div>
""")
gr.HTML("""
<div style="background-color: #fff3cd; border: 1px solid #ffeaa7; border-radius: 8px; padding: 1rem; margin: 1rem 0; color: #856404;">
<strong>β οΈ Medical Disclaimer:</strong> This AI tool is for informational purposes only and is not a substitute for professional medical diagnosis or treatment.
</div>
""")
with gr.Row(equal_height=True):
with gr.Column(scale=1):
gr.Markdown("### 1. Describe Your Symptoms")
symptoms_input = gr.Textbox(
label="Symptoms",
placeholder="e.g., 'I have a rash on my arm that is red and itchy...'", lines=5)
gr.Markdown("### 2. Upload an Image (Optional)")
image_input = gr.Image(label="Symptom Image", type="pil", height=300)
with gr.Row():
clear_btn = gr.Button("ποΈ Clear All", variant="secondary")
analyze_btn = gr.Button("π Analyze Symptoms", variant="primary", size="lg")
with gr.Column(scale=1):
gr.Markdown("### π Analysis Report")
output_text = gr.Textbox(
label="AI Analysis", lines=25, show_copy_button=True, placeholder="Analysis results will appear here...")
def clear_all():
return None, "", ""
analyze_btn.click(fn=analyze_symptoms, inputs=[image_input, symptoms_input], outputs=output_text)
clear_btn.click(fn=clear_all, outputs=[image_input, symptoms_input, output_text])
if __name__ == "__main__":
print("Starting Gradio interface...")
demo.launch(debug=True) |