Spaces:
Running
on
Zero
Running
on
Zero
# MIT License | |
# Copyright (c) Microsoft | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
# Copyright (c) [2025] [Microsoft] | |
# Copyright (c) [2025] [Chongjie Ye] | |
# SPDX-License-Identifier: MIT | |
# This file has been modified by Chongjie Ye on 2025/04/10 | |
# Original file was released under MIT, with the full license text # available at https://github.com/atong01/conditional-flow-matching/blob/1.0.7/LICENSE. | |
# This modified file is released under the same license. | |
import gradio as gr | |
import os | |
os.environ['SPCONV_ALGO'] = 'native' | |
from typing import * | |
import torch | |
import numpy as np | |
from Stable3DGen.hi3dgen.pipelines import Hi3DGenPipeline | |
import trimesh | |
import tempfile | |
from PIL import Image | |
import glob | |
from src.data import DemoData | |
from src.models import LiNo_UniPS | |
from torch.utils.data import DataLoader | |
import pytorch_lightning as pl | |
MAX_SEED = np.iinfo(np.int32).max | |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') | |
os.makedirs(TMP_DIR, exist_ok=True) | |
def cache_weights(weights_dir: str) -> dict: | |
import os | |
from huggingface_hub import snapshot_download | |
os.makedirs(weights_dir, exist_ok=True) | |
model_ids = [ | |
"Stable-X/trellis-normal-v0-1", | |
] | |
cached_paths = {} | |
for model_id in model_ids: | |
print(f"Caching weights for: {model_id}") | |
# Check if the model is already cached | |
local_path = os.path.join(weights_dir, model_id.split("/")[-1]) | |
if os.path.exists(local_path): | |
print(f"Already cached at: {local_path}") | |
cached_paths[model_id] = local_path | |
continue | |
# Download the model and cache it | |
print(f"Downloading and caching model: {model_id}") | |
# Use snapshot_download to download the model | |
local_path = snapshot_download(repo_id=model_id, local_dir=os.path.join(weights_dir, model_id.split("/")[-1]), force_download=False) | |
cached_paths[model_id] = local_path | |
print(f"Cached at: {local_path}") | |
return cached_paths | |
def preprocess_mesh(mesh_prompt): | |
print("Processing mesh") | |
trimesh_mesh = trimesh.load_mesh(mesh_prompt) | |
trimesh_mesh.export(mesh_prompt+'.glb') | |
return mesh_prompt+'.glb' | |
def generate_3d(image, seed=-1, | |
ss_guidance_strength=3, ss_sampling_steps=50, | |
slat_guidance_strength=3, slat_sampling_steps=6,normal_bridge=None): | |
if image is None: | |
return None, None, None | |
if seed == -1: | |
seed = np.random.randint(0, MAX_SEED) | |
# image = hi3dgen_pipeline.preprocess_image(image, resolution=1024) | |
# normal_image = normal_predictor(image, resolution=768, match_input_resolution=True, data_type='object') | |
if normal_bridge is None: | |
return 0 | |
mask = np.float32(np.abs(1 - np.sqrt(np.sum(normal_bridge * normal_bridge, axis=2))) < 0.5)[:,:,None] | |
normal_image = mask * (normal_bridge * 0.5 + 0.5) | |
normal_image = np.concatenate((normal_image,mask),axis=2)*255.0 | |
normal_image = Image.fromarray(normal_image.astype(np.uint8),mode="RGBA") | |
outputs = hi3dgen_pipeline.run( | |
normal_image, | |
seed=seed, | |
formats=["mesh",], | |
preprocess_image=False, | |
sparse_structure_sampler_params={ | |
"steps": ss_sampling_steps, | |
"cfg_strength": ss_guidance_strength, | |
}, | |
slat_sampler_params={ | |
"steps": slat_sampling_steps, | |
"cfg_strength": slat_guidance_strength, | |
}, | |
) | |
generated_mesh = outputs['mesh'][0] | |
# Save outputs | |
import datetime | |
output_id = datetime.datetime.now().strftime("%Y%m%d%H%M%S") | |
os.makedirs(os.path.join(TMP_DIR, output_id), exist_ok=True) | |
mesh_path = f"{TMP_DIR}/{output_id}/mesh.glb" | |
# Export mesh | |
trimesh_mesh = generated_mesh.to_trimesh(transform_pose=True) | |
trimesh_mesh.export(mesh_path) | |
return mesh_path, mesh_path | |
def predict_normal(input_images,input_mask): | |
test_dataset = DemoData(input_imgs_list=input_images,input_mask=input_mask) | |
test_loader = DataLoader(test_dataset, batch_size=1) | |
trainer = pl.Trainer(accelerator="auto", devices=1,precision="bf16-mixed") | |
nml_predict = trainer.predict(model=lino, dataloaders=test_loader) | |
nml_output = 0.5 * nml_predict[0] + 0.5 | |
return ((nml_output*255.0).astype(np.uint8), nml_predict[0]) | |
def convert_mesh(mesh_path, export_format): | |
"""Download the mesh in the selected format.""" | |
if not mesh_path: | |
return None | |
# Create a temporary file to store the mesh data | |
temp_file = tempfile.NamedTemporaryFile(suffix=f".{export_format}", delete=False) | |
temp_file_path = temp_file.name | |
new_mesh_path = mesh_path.replace(".glb", f".{export_format}") | |
mesh = trimesh.load_mesh(mesh_path) | |
mesh.export(temp_file_path) # Export to the temporary file | |
return temp_file_path # Return the path to the temporary file | |
def load_example_data(path,numberofimages): | |
path = os.path.join("demo", path) | |
mask_path = os.path.join(path,"mask.png") | |
image_pathes = glob.glob(os.path.join(path, f"L*")) + glob.glob(os.path.join(path, f"0*")) | |
image_pathes = image_pathes[:numberofimages] | |
input_images = [] | |
for p in image_pathes: | |
input_images.append(Image.open(p)) | |
if os.path.exists(mask_path): | |
input_mask = Image.open(mask_path) | |
else: | |
input_mask =Image.fromarray(np.ones_like(np.array(input_images[0]))) | |
normal_path = os.path.join(path,"normal.png") | |
if os.path.exists(normal_path): | |
normal_gt = Image.open(normal_path) | |
else: | |
normal_gt = Image.fromarray(np.ones_like(np.array(input_images[0]))) | |
return input_mask,input_images,normal_gt | |
# Create the Gradio interface with improved layout | |
with gr.Blocks(css="footer {visibility: hidden}") as demo: | |
gr.Markdown( | |
""" | |
<h1 style='text-align: center;'>Light of Normals: Unified Feature Representation for Universal Photometric Stereo</h1> | |
""" | |
) | |
with gr.Row(): | |
gr.Markdown(""" | |
<p align="center"> | |
<a title="Website" href="https://houyuanchen111.github.io/lino.github.io/" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> | |
<img src="https://www.obukhov.ai/img/badges/badge-website.svg"> | |
</a> | |
<a title="arXiv" href="https://stable-x.github.io/Hi3DGen/hi3dgen_paper.pdf" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> | |
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg"> | |
</a> | |
<a title="Github" href="https://github.com/Stable-X/Hi3DGen" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> | |
<img src="https://img.shields.io/github/stars/Stable-X/Hi3DGen?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars"> | |
</a> | |
</p> | |
""") | |
with gr.Row(): | |
gr.Markdown( | |
""" | |
LiNo-UniPS is a method for Univeral Photometric Stereo. It predicts the normal map from a given set of images. Key features include: | |
* **Light-Agnostic:** Does not require specific lighting parameters as input. | |
* **Arbitrary-Resolution:** Supports inputs of any resolution. | |
* **Mask-Free:** Also supports mask-free scene normal reconstruction. | |
""" | |
) | |
with gr.Row(): | |
gr.Markdown( | |
""" | |
### Getting Started: | |
1. **Upload Your Data**: Use the "Upload Multi-light Images" button on the left to provide your input. For best results, we recommend providing 6 or more images. | |
2. **Upload Your Mask (Optional)**: A mask is not required for scene reconstruction. However, to reconstruct the normal map for a specific **object**, providing a mask is highly recommended. Use the "Mask" button on the left. | |
3. **Reconstruct**: Click the "Run" button to start the reconstruction process. You can use the slider in "Advanced Settings" to control the number of multi-light images used by LiNo-UniPS. Note: If the selected number exceeds the total number of uploaded images, the maximum available number will be used instead. | |
4. **Visualize**: The result will appear in the "Normal Output" viewer on the right. If you use one of our provided examples that includes a ground truth normal map, it will be displayed in the "Ground Truth" viewer for comparison. | |
5. **Generate Mesh (Optional)**: After the normal map is reconstructed, you can click the "Generate Mesh" button. This will use the predicted normal as a "normal bridge" to generate the corresponding 3D mesh via Hi3DGen. We recommend this step primarily for **objects**, as Hi3DGen is currently an object-level model. | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
with gr.Tabs(): | |
with gr.Tab("Input Images"): | |
with gr.Row(): | |
input_mask = gr.Image( | |
label="Mask (Optional)", | |
type="pil", | |
height="300px", | |
) | |
input_images = gr.Gallery( | |
label="Upload Multi-light Images", | |
type="numpy", | |
columns=8, | |
object_fit="contain", | |
preview=True, | |
) | |
model_output = gr.Model3D( | |
label="3D Model Preview (Generated by Hi3DGen)", | |
) | |
with gr.Row(): | |
export_format = gr.Dropdown( | |
choices=["obj", "glb", "ply", "stl"], | |
value="glb", | |
label="File Format", | |
scale=2 | |
) | |
download_btn = gr.DownloadButton( | |
label="Export Mesh", | |
interactive=False, | |
scale=1 | |
) | |
with gr.Column(scale=2): | |
with gr.Tabs(): | |
with gr.Tab("LiNo-UniPS Output"): | |
with gr.Row(scale=3): | |
normal_output = gr.Image(label="Normal Output",height=700,) | |
normal_gt = gr.Image(label="Ground Truth",height=700) | |
with gr.Accordion("Advanced Settings", open=True): | |
numberofimages = gr.Slider(0, 100, label="Number of Images", value=16, step=1) | |
run_btn = gr.Button("Run", size="lg", variant="primary") | |
gen_shape_btn = gr.Button("Generate Mesh", size="lg", variant="primary") | |
seed = gr.Number(np.random.randint(0,1e10),visible=False) | |
ss_guidance_strength =gr.Number(3,visible=False) | |
ss_sampling_steps = gr.Number(50,visible=False) | |
slat_guidance_strength =gr.Number(3.0,visible=False) | |
slat_sampling_steps = gr.Number(6,visible=False) | |
normal_bridge = gr.State() | |
gen_shape_btn.click( | |
generate_3d, | |
inputs=[ | |
input_images, seed, | |
ss_guidance_strength, ss_sampling_steps, | |
slat_guidance_strength, slat_sampling_steps, | |
normal_bridge | |
], | |
outputs=[model_output, download_btn] | |
).then( | |
lambda: gr.Button(interactive=True), | |
outputs=[download_btn], | |
) | |
run_btn.click( | |
predict_normal, | |
inputs=[ | |
input_images, | |
input_mask | |
], | |
outputs=[normal_output,normal_bridge], | |
) | |
def update_download_button(mesh_path, export_format): | |
if not mesh_path: | |
return gr.File.update(value=None, interactive=False) | |
download_path = convert_mesh(mesh_path, export_format) | |
return download_path | |
export_format.change( | |
update_download_button, | |
inputs=[model_output, export_format], | |
outputs=[download_btn] | |
).then( | |
lambda: gr.Button(interactive=True), | |
outputs=[download_btn], | |
) | |
example_display = gr.Image(visible=False,type="pil",label="Input images") | |
obj_path = gr.Textbox(label = "Name",visible=False) | |
num = gr.Textbox(label = "Maximum number of images",visible=False) | |
is_mask = gr.Textbox(label = "Mask",visible=False) | |
is_gt = gr.Textbox(label = "Normal ground truth",visible=False) | |
image_type = gr.Textbox(label = "Image type",visible=False) | |
image_resolution = gr.Textbox(label = "Image resolution",visible=False) | |
display_data = [ | |
[Image.open("demo/basket/demo.png"), "basket", 8, False, False, "Real","960*960"], | |
[Image.open("demo/key/demo.png"), "key", 9, False, False, "Real","512*612"], | |
[Image.open("demo/ball/demo.png"), "ball", 96, True, True, "Real","512*612"], | |
[Image.open("demo/canandwood/demo.png"), "canandwood", 18, True, False, "Real","4032*2268"], | |
[Image.open("demo/cat/demo.png"), "cat", 96, True, True, "Real","512*612"], | |
[Image.open("demo/coins_and_keyboard/demo.png"), "coins_and_keyboard", 12, False, False, "Real","4000*4000"], | |
[Image.open("demo/owl/demo.png"), "owl", 13, True, False, "Real","2400*1600"], | |
[Image.open("demo/rabit/demo.png"), "rabit", 9, True, False, "Real","4000*4000"], | |
[Image.open("demo/reading/demo.png"), "reading", 96, True, True, "Real","512*612"], | |
] | |
gr.Markdown( | |
""" | |
<p style='color: #2b93d6; font-size: 1em; text-align: left;'> | |
Click any row to load an example. | |
</p> | |
""" | |
) | |
gr.Examples( | |
examples=display_data, | |
inputs=[example_display,obj_path,num,is_mask,is_gt,image_type,image_resolution], | |
label="Examples" | |
) | |
example_display.change( | |
fn=load_example_data, | |
inputs=[obj_path,numberofimages], | |
outputs=[ | |
input_mask, | |
input_images, | |
normal_gt | |
] | |
) | |
if __name__ == "__main__": | |
# Download and cache the weights | |
#cache_weights(WEIGHTS_DIR) | |
hi3dgen_pipeline = Hi3DGenPipeline.from_pretrained("weights/trellis-normal-v0-1") | |
hi3dgen_pipeline.cuda() | |
lino = LiNo_UniPS() | |
lino.from_pretrained("weights/lino/lino.pth") | |
demo.launch(share=False, server_name="0.0.0.0") | |