Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,858 Bytes
c295391 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
# MIT License
# Copyright (c) Microsoft
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# Copyright (c) [2025] [Microsoft]
# Copyright (c) [2025] [Chongjie Ye]
# SPDX-License-Identifier: MIT
# This file has been modified by Chongjie Ye on 2025/04/10
# Original file was released under MIT, with the full license text # available at https://github.com/atong01/conditional-flow-matching/blob/1.0.7/LICENSE.
# This modified file is released under the same license.
import gradio as gr
import os
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
from Stable3DGen.hi3dgen.pipelines import Hi3DGenPipeline
import trimesh
import tempfile
from PIL import Image
import glob
from src.data import DemoData
from src.models import LiNo_UniPS
from torch.utils.data import DataLoader
import pytorch_lightning as pl
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)
def cache_weights(weights_dir: str) -> dict:
import os
from huggingface_hub import snapshot_download
os.makedirs(weights_dir, exist_ok=True)
model_ids = [
"Stable-X/trellis-normal-v0-1",
]
cached_paths = {}
for model_id in model_ids:
print(f"Caching weights for: {model_id}")
# Check if the model is already cached
local_path = os.path.join(weights_dir, model_id.split("/")[-1])
if os.path.exists(local_path):
print(f"Already cached at: {local_path}")
cached_paths[model_id] = local_path
continue
# Download the model and cache it
print(f"Downloading and caching model: {model_id}")
# Use snapshot_download to download the model
local_path = snapshot_download(repo_id=model_id, local_dir=os.path.join(weights_dir, model_id.split("/")[-1]), force_download=False)
cached_paths[model_id] = local_path
print(f"Cached at: {local_path}")
return cached_paths
def preprocess_mesh(mesh_prompt):
print("Processing mesh")
trimesh_mesh = trimesh.load_mesh(mesh_prompt)
trimesh_mesh.export(mesh_prompt+'.glb')
return mesh_prompt+'.glb'
def generate_3d(image, seed=-1,
ss_guidance_strength=3, ss_sampling_steps=50,
slat_guidance_strength=3, slat_sampling_steps=6,normal_bridge=None):
if image is None:
return None, None, None
if seed == -1:
seed = np.random.randint(0, MAX_SEED)
# image = hi3dgen_pipeline.preprocess_image(image, resolution=1024)
# normal_image = normal_predictor(image, resolution=768, match_input_resolution=True, data_type='object')
if normal_bridge is None:
return 0
mask = np.float32(np.abs(1 - np.sqrt(np.sum(normal_bridge * normal_bridge, axis=2))) < 0.5)[:,:,None]
normal_image = mask * (normal_bridge * 0.5 + 0.5)
normal_image = np.concatenate((normal_image,mask),axis=2)*255.0
normal_image = Image.fromarray(normal_image.astype(np.uint8),mode="RGBA")
outputs = hi3dgen_pipeline.run(
normal_image,
seed=seed,
formats=["mesh",],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)
generated_mesh = outputs['mesh'][0]
# Save outputs
import datetime
output_id = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
os.makedirs(os.path.join(TMP_DIR, output_id), exist_ok=True)
mesh_path = f"{TMP_DIR}/{output_id}/mesh.glb"
# Export mesh
trimesh_mesh = generated_mesh.to_trimesh(transform_pose=True)
trimesh_mesh.export(mesh_path)
return mesh_path, mesh_path
def predict_normal(input_images,input_mask):
test_dataset = DemoData(input_imgs_list=input_images,input_mask=input_mask)
test_loader = DataLoader(test_dataset, batch_size=1)
trainer = pl.Trainer(accelerator="auto", devices=1,precision="bf16-mixed")
nml_predict = trainer.predict(model=lino, dataloaders=test_loader)
nml_output = 0.5 * nml_predict[0] + 0.5
return ((nml_output*255.0).astype(np.uint8), nml_predict[0])
def convert_mesh(mesh_path, export_format):
"""Download the mesh in the selected format."""
if not mesh_path:
return None
# Create a temporary file to store the mesh data
temp_file = tempfile.NamedTemporaryFile(suffix=f".{export_format}", delete=False)
temp_file_path = temp_file.name
new_mesh_path = mesh_path.replace(".glb", f".{export_format}")
mesh = trimesh.load_mesh(mesh_path)
mesh.export(temp_file_path) # Export to the temporary file
return temp_file_path # Return the path to the temporary file
def load_example_data(path,numberofimages):
path = os.path.join("demo", path)
mask_path = os.path.join(path,"mask.png")
image_pathes = glob.glob(os.path.join(path, f"L*")) + glob.glob(os.path.join(path, f"0*"))
image_pathes = image_pathes[:numberofimages]
input_images = []
for p in image_pathes:
input_images.append(Image.open(p))
if os.path.exists(mask_path):
input_mask = Image.open(mask_path)
else:
input_mask =Image.fromarray(np.ones_like(np.array(input_images[0])))
normal_path = os.path.join(path,"normal.png")
if os.path.exists(normal_path):
normal_gt = Image.open(normal_path)
else:
normal_gt = Image.fromarray(np.ones_like(np.array(input_images[0])))
return input_mask,input_images,normal_gt
# Create the Gradio interface with improved layout
with gr.Blocks(css="footer {visibility: hidden}") as demo:
gr.Markdown(
"""
<h1 style='text-align: center;'>Light of Normals: Unified Feature Representation for Universal Photometric Stereo</h1>
"""
)
with gr.Row():
gr.Markdown("""
<p align="center">
<a title="Website" href="https://houyuanchen111.github.io/lino.github.io/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-website.svg">
</a>
<a title="arXiv" href="https://stable-x.github.io/Hi3DGen/hi3dgen_paper.pdf" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
</a>
<a title="Github" href="https://github.com/Stable-X/Hi3DGen" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/github/stars/Stable-X/Hi3DGen?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars">
</a>
</p>
""")
with gr.Row():
gr.Markdown(
"""
LiNo-UniPS is a method for Univeral Photometric Stereo. It predicts the normal map from a given set of images. Key features include:
* **Light-Agnostic:** Does not require specific lighting parameters as input.
* **Arbitrary-Resolution:** Supports inputs of any resolution.
* **Mask-Free:** Also supports mask-free scene normal reconstruction.
"""
)
with gr.Row():
gr.Markdown(
"""
### Getting Started:
1. **Upload Your Data**: Use the "Upload Multi-light Images" button on the left to provide your input. For best results, we recommend providing 6 or more images.
2. **Upload Your Mask (Optional)**: A mask is not required for scene reconstruction. However, to reconstruct the normal map for a specific **object**, providing a mask is highly recommended. Use the "Mask" button on the left.
3. **Reconstruct**: Click the "Run" button to start the reconstruction process. You can use the slider in "Advanced Settings" to control the number of multi-light images used by LiNo-UniPS. Note: If the selected number exceeds the total number of uploaded images, the maximum available number will be used instead.
4. **Visualize**: The result will appear in the "Normal Output" viewer on the right. If you use one of our provided examples that includes a ground truth normal map, it will be displayed in the "Ground Truth" viewer for comparison.
5. **Generate Mesh (Optional)**: After the normal map is reconstructed, you can click the "Generate Mesh" button. This will use the predicted normal as a "normal bridge" to generate the corresponding 3D mesh via Hi3DGen. We recommend this step primarily for **objects**, as Hi3DGen is currently an object-level model.
"""
)
with gr.Row():
with gr.Column(scale=1):
with gr.Tabs():
with gr.Tab("Input Images"):
with gr.Row():
input_mask = gr.Image(
label="Mask (Optional)",
type="pil",
height="300px",
)
input_images = gr.Gallery(
label="Upload Multi-light Images",
type="numpy",
columns=8,
object_fit="contain",
preview=True,
)
model_output = gr.Model3D(
label="3D Model Preview (Generated by Hi3DGen)",
)
with gr.Row():
export_format = gr.Dropdown(
choices=["obj", "glb", "ply", "stl"],
value="glb",
label="File Format",
scale=2
)
download_btn = gr.DownloadButton(
label="Export Mesh",
interactive=False,
scale=1
)
with gr.Column(scale=2):
with gr.Tabs():
with gr.Tab("LiNo-UniPS Output"):
with gr.Row(scale=3):
normal_output = gr.Image(label="Normal Output",height=700,)
normal_gt = gr.Image(label="Ground Truth",height=700)
with gr.Accordion("Advanced Settings", open=True):
numberofimages = gr.Slider(0, 100, label="Number of Images", value=16, step=1)
run_btn = gr.Button("Run", size="lg", variant="primary")
gen_shape_btn = gr.Button("Generate Mesh", size="lg", variant="primary")
seed = gr.Number(np.random.randint(0,1e10),visible=False)
ss_guidance_strength =gr.Number(3,visible=False)
ss_sampling_steps = gr.Number(50,visible=False)
slat_guidance_strength =gr.Number(3.0,visible=False)
slat_sampling_steps = gr.Number(6,visible=False)
normal_bridge = gr.State()
gen_shape_btn.click(
generate_3d,
inputs=[
input_images, seed,
ss_guidance_strength, ss_sampling_steps,
slat_guidance_strength, slat_sampling_steps,
normal_bridge
],
outputs=[model_output, download_btn]
).then(
lambda: gr.Button(interactive=True),
outputs=[download_btn],
)
run_btn.click(
predict_normal,
inputs=[
input_images,
input_mask
],
outputs=[normal_output,normal_bridge],
)
def update_download_button(mesh_path, export_format):
if not mesh_path:
return gr.File.update(value=None, interactive=False)
download_path = convert_mesh(mesh_path, export_format)
return download_path
export_format.change(
update_download_button,
inputs=[model_output, export_format],
outputs=[download_btn]
).then(
lambda: gr.Button(interactive=True),
outputs=[download_btn],
)
example_display = gr.Image(visible=False,type="pil",label="Input images")
obj_path = gr.Textbox(label = "Name",visible=False)
num = gr.Textbox(label = "Maximum number of images",visible=False)
is_mask = gr.Textbox(label = "Mask",visible=False)
is_gt = gr.Textbox(label = "Normal ground truth",visible=False)
image_type = gr.Textbox(label = "Image type",visible=False)
image_resolution = gr.Textbox(label = "Image resolution",visible=False)
display_data = [
[Image.open("demo/basket/demo.png"), "basket", 8, False, False, "Real","960*960"],
[Image.open("demo/key/demo.png"), "key", 9, False, False, "Real","512*612"],
[Image.open("demo/ball/demo.png"), "ball", 96, True, True, "Real","512*612"],
[Image.open("demo/canandwood/demo.png"), "canandwood", 18, True, False, "Real","4032*2268"],
[Image.open("demo/cat/demo.png"), "cat", 96, True, True, "Real","512*612"],
[Image.open("demo/coins_and_keyboard/demo.png"), "coins_and_keyboard", 12, False, False, "Real","4000*4000"],
[Image.open("demo/owl/demo.png"), "owl", 13, True, False, "Real","2400*1600"],
[Image.open("demo/rabit/demo.png"), "rabit", 9, True, False, "Real","4000*4000"],
[Image.open("demo/reading/demo.png"), "reading", 96, True, True, "Real","512*612"],
]
gr.Markdown(
"""
<p style='color: #2b93d6; font-size: 1em; text-align: left;'>
Click any row to load an example.
</p>
"""
)
gr.Examples(
examples=display_data,
inputs=[example_display,obj_path,num,is_mask,is_gt,image_type,image_resolution],
label="Examples"
)
example_display.change(
fn=load_example_data,
inputs=[obj_path,numberofimages],
outputs=[
input_mask,
input_images,
normal_gt
]
)
if __name__ == "__main__":
# Download and cache the weights
#cache_weights(WEIGHTS_DIR)
hi3dgen_pipeline = Hi3DGenPipeline.from_pretrained("weights/trellis-normal-v0-1")
hi3dgen_pipeline.cuda()
lino = LiNo_UniPS()
lino.from_pretrained("weights/lino/lino.pth")
demo.launch(share=False, server_name="0.0.0.0")
|