File size: 15,858 Bytes
c295391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
# MIT License

# Copyright (c) Microsoft

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

# Copyright (c) [2025] [Microsoft]
# Copyright (c) [2025] [Chongjie Ye] 
# SPDX-License-Identifier: MIT
# This file has been modified by Chongjie Ye on 2025/04/10
# Original file was released under MIT, with the full license text # available at https://github.com/atong01/conditional-flow-matching/blob/1.0.7/LICENSE.
# This modified file is released under the same license.

import gradio as gr
import os
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
from Stable3DGen.hi3dgen.pipelines import Hi3DGenPipeline
import trimesh
import tempfile
from PIL import Image
import glob
from src.data import DemoData
from src.models import LiNo_UniPS
from torch.utils.data import DataLoader
import pytorch_lightning as pl

MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)



def cache_weights(weights_dir: str) -> dict:
    import os
    from huggingface_hub import snapshot_download

    os.makedirs(weights_dir, exist_ok=True)
    model_ids = [
        "Stable-X/trellis-normal-v0-1",
    ]
    cached_paths = {}
    for model_id in model_ids:
        print(f"Caching weights for: {model_id}")
        # Check if the model is already cached
        local_path = os.path.join(weights_dir, model_id.split("/")[-1])
        if os.path.exists(local_path):
            print(f"Already cached at: {local_path}")
            cached_paths[model_id] = local_path
            continue
        # Download the model and cache it
        print(f"Downloading and caching model: {model_id}")
        # Use snapshot_download to download the model
        local_path = snapshot_download(repo_id=model_id, local_dir=os.path.join(weights_dir, model_id.split("/")[-1]), force_download=False)
        cached_paths[model_id] = local_path
        print(f"Cached at: {local_path}")

    return cached_paths

def preprocess_mesh(mesh_prompt):
    print("Processing mesh")
    trimesh_mesh = trimesh.load_mesh(mesh_prompt)
    trimesh_mesh.export(mesh_prompt+'.glb')
    return mesh_prompt+'.glb'

def generate_3d(image, seed=-1,  
                ss_guidance_strength=3, ss_sampling_steps=50,
                slat_guidance_strength=3, slat_sampling_steps=6,normal_bridge=None):
    if image is None:
        return None, None, None

    if seed == -1:
        seed = np.random.randint(0, MAX_SEED)
    
    # image = hi3dgen_pipeline.preprocess_image(image, resolution=1024)
    # normal_image = normal_predictor(image, resolution=768, match_input_resolution=True, data_type='object')
    if normal_bridge is None:
        return 0 
    mask = np.float32(np.abs(1 - np.sqrt(np.sum(normal_bridge * normal_bridge, axis=2))) < 0.5)[:,:,None]
    normal_image = mask * (normal_bridge * 0.5 + 0.5)
    normal_image = np.concatenate((normal_image,mask),axis=2)*255.0
    normal_image = Image.fromarray(normal_image.astype(np.uint8),mode="RGBA") 


    outputs = hi3dgen_pipeline.run(
        normal_image,
        seed=seed,
        formats=["mesh",],
        preprocess_image=False,
        sparse_structure_sampler_params={
            "steps": ss_sampling_steps,
            "cfg_strength": ss_guidance_strength,
        },
        slat_sampler_params={
            "steps": slat_sampling_steps,
            "cfg_strength": slat_guidance_strength,
        },
    )
    generated_mesh = outputs['mesh'][0]
    
    # Save outputs
    import datetime
    output_id = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
    os.makedirs(os.path.join(TMP_DIR, output_id), exist_ok=True)
    mesh_path = f"{TMP_DIR}/{output_id}/mesh.glb"
    
    # Export mesh
    trimesh_mesh = generated_mesh.to_trimesh(transform_pose=True)

    trimesh_mesh.export(mesh_path)

    return mesh_path, mesh_path

def predict_normal(input_images,input_mask):
    test_dataset = DemoData(input_imgs_list=input_images,input_mask=input_mask)
    test_loader = DataLoader(test_dataset, batch_size=1)

    trainer = pl.Trainer(accelerator="auto", devices=1,precision="bf16-mixed")
    nml_predict = trainer.predict(model=lino, dataloaders=test_loader)

    nml_output = 0.5 * nml_predict[0] + 0.5
    
    return ((nml_output*255.0).astype(np.uint8), nml_predict[0])

def convert_mesh(mesh_path, export_format):
    """Download the mesh in the selected format."""
    if not mesh_path:
        return None
    
    # Create a temporary file to store the mesh data
    temp_file = tempfile.NamedTemporaryFile(suffix=f".{export_format}", delete=False)
    temp_file_path = temp_file.name
    
    new_mesh_path = mesh_path.replace(".glb", f".{export_format}")
    mesh = trimesh.load_mesh(mesh_path)
    mesh.export(temp_file_path)  # Export to the temporary file
    
    return temp_file_path # Return the path to the temporary file

def load_example_data(path,numberofimages):
    path = os.path.join("demo", path)
    mask_path = os.path.join(path,"mask.png")
    image_pathes = glob.glob(os.path.join(path, f"L*")) + glob.glob(os.path.join(path, f"0*"))
    image_pathes = image_pathes[:numberofimages]
    input_images = []
    for p in image_pathes:
        input_images.append(Image.open(p))
    
    if os.path.exists(mask_path):
        input_mask = Image.open(mask_path)
    else:
        input_mask =Image.fromarray(np.ones_like(np.array(input_images[0])))
    normal_path = os.path.join(path,"normal.png")
    if os.path.exists(normal_path):
        normal_gt = Image.open(normal_path)
    else:
        normal_gt = Image.fromarray(np.ones_like(np.array(input_images[0])))
    return input_mask,input_images,normal_gt

# Create the Gradio interface with improved layout
with gr.Blocks(css="footer {visibility: hidden}") as demo:
    gr.Markdown(
        """
        <h1 style='text-align: center;'>Light of Normals: Unified Feature Representation for Universal Photometric Stereo</h1>
        """
    )
    
    with gr.Row():
        gr.Markdown("""
                    <p align="center">
                    <a title="Website" href="https://houyuanchen111.github.io/lino.github.io/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
                        <img src="https://www.obukhov.ai/img/badges/badge-website.svg">
                    </a>
                    <a title="arXiv" href="https://stable-x.github.io/Hi3DGen/hi3dgen_paper.pdf" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
                        <img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
                    </a>
                    <a title="Github" href="https://github.com/Stable-X/Hi3DGen" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
                        <img src="https://img.shields.io/github/stars/Stable-X/Hi3DGen?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars">
                    </a>
              
                    </p>
                    """)
    with gr.Row():
       gr.Markdown(
        """    
        LiNo-UniPS is a method for Univeral Photometric Stereo. It predicts the normal map from a given set of images. Key features include:
        
        * **Light-Agnostic:** Does not require specific lighting parameters as input.
        * **Arbitrary-Resolution:** Supports inputs of any resolution.
        * **Mask-Free:** Also supports mask-free scene normal reconstruction.
        """
    )
    with gr.Row():
        gr.Markdown(
                """
                ### Getting Started:

                1.  **Upload Your Data**: Use the "Upload Multi-light Images" button on the left to provide your input. For best results, we recommend providing 6 or more images.
                
                2.  **Upload Your Mask (Optional)**: A mask is not required for scene reconstruction. However, to reconstruct the normal map for a specific **object**, providing a mask is highly recommended. Use the "Mask" button on the left.
                
                3.  **Reconstruct**: Click the "Run" button to start the reconstruction process. You can use the slider in "Advanced Settings" to control the number of multi-light images used by LiNo-UniPS. Note: If the selected number exceeds the total number of uploaded images, the maximum available number will be used instead.
                
                4.  **Visualize**: The result will appear in the "Normal Output" viewer on the right. If you use one of our provided examples that includes a ground truth normal map, it will be displayed in the "Ground Truth" viewer for comparison.
                
                5.  **Generate Mesh (Optional)**: After the normal map is reconstructed, you can click the "Generate Mesh" button. This will use the predicted normal as a "normal bridge" to generate the corresponding 3D mesh via Hi3DGen. We recommend this step primarily for **objects**, as Hi3DGen is currently an object-level model.
                """
            )
    with gr.Row():

            with gr.Column(scale=1):
                with gr.Tabs():
                    with gr.Tab("Input Images"):
                  
                        with gr.Row():
                            input_mask = gr.Image(
                                label="Mask (Optional)",
                                type="pil",
                                 height="300px",
                                 
                            )
                        input_images = gr.Gallery(
                            label="Upload Multi-light Images",
                            type="numpy",
                            columns=8, 
                            object_fit="contain",
                            preview=True,
                        )
                
               
                model_output = gr.Model3D(
                    label="3D Model Preview (Generated by Hi3DGen)",
                   
                )
          
                with gr.Row():
                    export_format = gr.Dropdown(
                        choices=["obj", "glb", "ply", "stl"],
                        value="glb",
                        label="File Format",
                        scale=2 
                    )
                    download_btn = gr.DownloadButton(
                        label="Export Mesh", 
                        interactive=False,
                        scale=1 
                    )

            with gr.Column(scale=2):
                with gr.Tabs():
                    with gr.Tab("LiNo-UniPS Output"):
                        with gr.Row(scale=3):
                            normal_output = gr.Image(label="Normal Output",height=700,)
                            normal_gt = gr.Image(label="Ground Truth",height=700)
                        with gr.Accordion("Advanced Settings", open=True):
                            numberofimages = gr.Slider(0, 100, label="Number of Images", value=16, step=1)
                     
                        run_btn = gr.Button("Run", size="lg", variant="primary")
                        gen_shape_btn = gr.Button("Generate Mesh", size="lg", variant="primary")
            
    
           
    
    seed = gr.Number(np.random.randint(0,1e10),visible=False)
    ss_guidance_strength =gr.Number(3,visible=False)
    ss_sampling_steps = gr.Number(50,visible=False)
    slat_guidance_strength =gr.Number(3.0,visible=False)
    slat_sampling_steps = gr.Number(6,visible=False)
    normal_bridge = gr.State()
    
    gen_shape_btn.click(
        generate_3d,
        inputs=[
            input_images, seed,  
            ss_guidance_strength, ss_sampling_steps,
            slat_guidance_strength, slat_sampling_steps,
            normal_bridge
        ],
        outputs=[model_output, download_btn]
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[download_btn],
    )

    run_btn.click(
        predict_normal,
        inputs=[
            input_images,
            input_mask
        ],
        outputs=[normal_output,normal_bridge],
)
    
    def update_download_button(mesh_path, export_format):
        if not mesh_path:
            return gr.File.update(value=None, interactive=False)
        
        download_path = convert_mesh(mesh_path, export_format)
        return download_path
    
    export_format.change(
        update_download_button,
        inputs=[model_output, export_format],
        outputs=[download_btn]
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[download_btn],
    )

    example_display = gr.Image(visible=False,type="pil",label="Input images")
    obj_path = gr.Textbox(label = "Name",visible=False)
    num = gr.Textbox(label = "Maximum number of images",visible=False)
    is_mask = gr.Textbox(label = "Mask",visible=False)
    is_gt =  gr.Textbox(label = "Normal ground truth",visible=False)
    image_type = gr.Textbox(label = "Image type",visible=False)
    image_resolution = gr.Textbox(label = "Image resolution",visible=False)


    display_data = [

        [Image.open("demo/basket/demo.png"), "basket", 8, False, False, "Real","960*960"],
        [Image.open("demo/key/demo.png"), "key", 9, False, False, "Real","512*612"],
        [Image.open("demo/ball/demo.png"), "ball", 96, True, True, "Real","512*612"],
        [Image.open("demo/canandwood/demo.png"), "canandwood", 18, True, False, "Real","4032*2268"],
        [Image.open("demo/cat/demo.png"), "cat", 96, True, True, "Real","512*612"],
        [Image.open("demo/coins_and_keyboard/demo.png"), "coins_and_keyboard", 12, False, False, "Real","4000*4000"],
        [Image.open("demo/owl/demo.png"), "owl", 13, True, False, "Real","2400*1600"],
        [Image.open("demo/rabit/demo.png"), "rabit", 9, True, False, "Real","4000*4000"],
        [Image.open("demo/reading/demo.png"), "reading", 96, True, True, "Real","512*612"],
    ]
    gr.Markdown(
        """
        <p style='color: #2b93d6; font-size: 1em; text-align: left;'>
            Click any row to load an example.
        </p>
        """
    )
    gr.Examples(
        examples=display_data,
        inputs=[example_display,obj_path,num,is_mask,is_gt,image_type,image_resolution], 
        label="Examples"
    )
    example_display.change(
        fn=load_example_data,           
        inputs=[obj_path,numberofimages],   
        outputs=[                       
             input_mask,
             input_images,
             normal_gt
        ]
    )

if __name__ == "__main__":
    # Download and cache the weights
    #cache_weights(WEIGHTS_DIR)

    hi3dgen_pipeline = Hi3DGenPipeline.from_pretrained("weights/trellis-normal-v0-1")
    hi3dgen_pipeline.cuda()
    lino = LiNo_UniPS()
    lino.from_pretrained("weights/lino/lino.pth")
  
    demo.launch(share=False, server_name="0.0.0.0")