Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
from PIL import Image, ImageDraw, ImageFont | |
import torch | |
import spaces | |
import numpy as np | |
# Modèles optimisés pour le temps réel | |
REALTIME_MODELS = { | |
"YOLOS (tiny-sized) model": "hustvl/yolos-tiny", | |
"RT-DETR": "PekingU/rtdetr_r18vd" | |
} | |
# Variables globales | |
current_detector = None | |
current_model_name = None | |
def load_detector(model_name): | |
"""Charge le détecteur avec cache""" | |
global current_detector, current_model_name | |
if current_model_name != model_name: | |
print(f"🔄 Chargement du modèle: {model_name}") | |
model_id = REALTIME_MODELS[model_name] | |
current_detector = pipeline( | |
"object-detection", | |
model=model_id, | |
verbose=False, | |
device=0 if torch.cuda.is_available() else -1 | |
) | |
current_model_name = model_name | |
print(f"✅ Modèle chargé: {model_name}") | |
return current_detector | |
def process_webcam(image, model_choice, confidence_threshold): | |
"""Traite l'image de la webcam""" | |
print(f"🎥 Frame reçue - Type: {type(image)}, Shape: {getattr(image, 'size', 'N/A')}") | |
if image is None: | |
print("❌ Image None reçue - webcam pas encore initialisée") | |
# Retourner une image d'attente | |
waiting_img = Image.new('RGB', (640, 480), color='#1f2937') | |
draw = ImageDraw.Draw(waiting_img) | |
try: | |
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 32) | |
except: | |
font = ImageFont.load_default() | |
text = "🎥 En attente de la webcam..." | |
bbox = draw.textbbox((0, 0), text, font=font) | |
x = (640 - bbox[2]) // 2 | |
y = (480 - bbox[3]) // 2 | |
draw.text((x, y), text, fill='white', font=font) | |
return waiting_img | |
try: | |
# S'assurer qu'on a une image PIL | |
if isinstance(image, np.ndarray): | |
pil_image = Image.fromarray(image) | |
else: | |
pil_image = image | |
print(f"📏 Taille image: {pil_image.size}") | |
# Charger le détecteur | |
detector = load_detector(model_choice) | |
# Redimensionner pour la vitesse | |
max_size = 640 | |
original_size = pil_image.size | |
if max(original_size) > max_size: | |
ratio = max_size / max(original_size) | |
new_size = (int(original_size[0] * ratio), int(original_size[1] * ratio)) | |
resized_image = pil_image.resize(new_size) | |
else: | |
resized_image = pil_image | |
ratio = 1.0 | |
print(f"🔍 Lancement détection avec seuil: {confidence_threshold}") | |
# Détection | |
detections = detector(resized_image) | |
print(f"🎯 Détections brutes: {len(detections)}") | |
# Filtrer par confiance | |
filtered_detections = [ | |
det for det in detections | |
if det.get('score', 0) >= confidence_threshold | |
] | |
print(f"✅ Détections filtrées: {len(filtered_detections)}") | |
for det in filtered_detections: | |
print(f" - {det['label']}: {det['score']:.3f}") | |
# Ajuster les coordonnées | |
for det in filtered_detections: | |
if ratio != 1.0: | |
det['box']['xmin'] = int(det['box']['xmin'] / ratio) | |
det['box']['ymin'] = int(det['box']['ymin'] / ratio) | |
det['box']['xmax'] = int(det['box']['xmax'] / ratio) | |
det['box']['ymax'] = int(det['box']['ymax'] / ratio) | |
# Dessiner les détections | |
result_image = draw_detections(pil_image, filtered_detections) | |
print(f"🎨 Image annotée créée") | |
return result_image | |
except Exception as e: | |
print(f"❌ Erreur dans process_webcam: {e}") | |
import traceback | |
traceback.print_exc() | |
return image | |
def draw_detections(image, detections): | |
"""Dessine les détections avec des couleurs vives""" | |
img_copy = image.copy() | |
draw = ImageDraw.Draw(img_copy) | |
# Couleurs très visibles | |
colors = ["#FF0000", "#00FF00", "#0000FF", "#FFFF00", "#FF00FF"] | |
# Police par défaut | |
try: | |
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 24) | |
except: | |
font = ImageFont.load_default() | |
for i, detection in enumerate(detections): | |
box = detection['box'] | |
label = detection['label'] | |
score = detection['score'] | |
x1, y1 = box['xmin'], box['ymin'] | |
x2, y2 = box['xmax'], box['ymax'] | |
color = colors[i % len(colors)] | |
# Boîte très visible | |
draw.rectangle([x1, y1, x2, y2], outline=color, width=5) | |
# Texte avec fond | |
text = f"{label} {score:.2f}" | |
bbox = draw.textbbox((x1, y1-35), text, font=font) | |
draw.rectangle([bbox[0]-5, bbox[1]-5, bbox[2]+5, bbox[3]+5], fill=color) | |
draw.text((x1, y1-35), text, fill="white", font=font) | |
return img_copy | |
# Interface avec activation webcam forcée | |
demo = gr.Interface( | |
fn=process_webcam, | |
inputs=[ | |
gr.Image( | |
sources=["webcam"], | |
streaming=True, | |
type="pil", | |
show_download_button=False, | |
interactive=True | |
), | |
gr.Dropdown( | |
choices=list(REALTIME_MODELS.keys()), | |
value="YOLOS (tiny-sized) model", | |
label="Modèle" | |
), | |
gr.Slider(0.1, 1.0, 0.1, step=0.1, label="Confiance") | |
], | |
outputs=gr.Image(streaming=True, type="pil", show_download_button=False), | |
live=True, | |
title="🎥 Détection Live", | |
description="🚨 IMPORTANT: Activez la webcam en cliquant sur l'icône caméra dans la zone Image", | |
flagging_mode="never" | |
) | |
if __name__ == "__main__": | |
demo.launch() | |