Spaces:
Sleeping
Sleeping
File size: 5,949 Bytes
9bdeee9 ad0e663 9bdeee9 ad0e663 d26af75 9bdeee9 73c7ee5 ad0e663 9bdeee9 e8d5d48 ad0e663 d26af75 ad0e663 9bdeee9 73c7ee5 b6656b0 73c7ee5 e8d5d48 b6656b0 9bdeee9 73c7ee5 e8d5d48 9bdeee9 e8d5d48 73c7ee5 9bdeee9 73c7ee5 ad0e663 73c7ee5 ad0e663 73c7ee5 ad0e663 e85d462 9bdeee9 73c7ee5 e8d5d48 73c7ee5 ad0e663 9bdeee9 e8d5d48 73c7ee5 9bdeee9 73c7ee5 9bdeee9 73c7ee5 e8d5d48 9bdeee9 e8d5d48 73c7ee5 e8d5d48 73c7ee5 9bdeee9 73c7ee5 9bdeee9 73c7ee5 ad0e663 e8d5d48 9bdeee9 73c7ee5 9bdeee9 73c7ee5 9bdeee9 e8d5d48 9bdeee9 e85d462 73c7ee5 b6656b0 e85d462 b6656b0 73c7ee5 d26af75 73c7ee5 b6656b0 73c7ee5 b6656b0 73c7ee5 e85d462 b6656b0 73c7ee5 9bdeee9 ad0e663 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import gradio as gr
from transformers import pipeline
from PIL import Image, ImageDraw, ImageFont
import torch
import spaces
import numpy as np
# Modèles optimisés pour le temps réel
REALTIME_MODELS = {
"YOLOS (tiny-sized) model": "hustvl/yolos-tiny",
"RT-DETR": "PekingU/rtdetr_r18vd"
}
# Variables globales
current_detector = None
current_model_name = None
@spaces.GPU
def load_detector(model_name):
"""Charge le détecteur avec cache"""
global current_detector, current_model_name
if current_model_name != model_name:
print(f"🔄 Chargement du modèle: {model_name}")
model_id = REALTIME_MODELS[model_name]
current_detector = pipeline(
"object-detection",
model=model_id,
verbose=False,
device=0 if torch.cuda.is_available() else -1
)
current_model_name = model_name
print(f"✅ Modèle chargé: {model_name}")
return current_detector
@spaces.GPU
def process_webcam(image, model_choice, confidence_threshold):
"""Traite l'image de la webcam"""
print(f"🎥 Frame reçue - Type: {type(image)}, Shape: {getattr(image, 'size', 'N/A')}")
if image is None:
print("❌ Image None reçue - webcam pas encore initialisée")
# Retourner une image d'attente
waiting_img = Image.new('RGB', (640, 480), color='#1f2937')
draw = ImageDraw.Draw(waiting_img)
try:
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 32)
except:
font = ImageFont.load_default()
text = "🎥 En attente de la webcam..."
bbox = draw.textbbox((0, 0), text, font=font)
x = (640 - bbox[2]) // 2
y = (480 - bbox[3]) // 2
draw.text((x, y), text, fill='white', font=font)
return waiting_img
try:
# S'assurer qu'on a une image PIL
if isinstance(image, np.ndarray):
pil_image = Image.fromarray(image)
else:
pil_image = image
print(f"📏 Taille image: {pil_image.size}")
# Charger le détecteur
detector = load_detector(model_choice)
# Redimensionner pour la vitesse
max_size = 640
original_size = pil_image.size
if max(original_size) > max_size:
ratio = max_size / max(original_size)
new_size = (int(original_size[0] * ratio), int(original_size[1] * ratio))
resized_image = pil_image.resize(new_size)
else:
resized_image = pil_image
ratio = 1.0
print(f"🔍 Lancement détection avec seuil: {confidence_threshold}")
# Détection
detections = detector(resized_image)
print(f"🎯 Détections brutes: {len(detections)}")
# Filtrer par confiance
filtered_detections = [
det for det in detections
if det.get('score', 0) >= confidence_threshold
]
print(f"✅ Détections filtrées: {len(filtered_detections)}")
for det in filtered_detections:
print(f" - {det['label']}: {det['score']:.3f}")
# Ajuster les coordonnées
for det in filtered_detections:
if ratio != 1.0:
det['box']['xmin'] = int(det['box']['xmin'] / ratio)
det['box']['ymin'] = int(det['box']['ymin'] / ratio)
det['box']['xmax'] = int(det['box']['xmax'] / ratio)
det['box']['ymax'] = int(det['box']['ymax'] / ratio)
# Dessiner les détections
result_image = draw_detections(pil_image, filtered_detections)
print(f"🎨 Image annotée créée")
return result_image
except Exception as e:
print(f"❌ Erreur dans process_webcam: {e}")
import traceback
traceback.print_exc()
return image
def draw_detections(image, detections):
"""Dessine les détections avec des couleurs vives"""
img_copy = image.copy()
draw = ImageDraw.Draw(img_copy)
# Couleurs très visibles
colors = ["#FF0000", "#00FF00", "#0000FF", "#FFFF00", "#FF00FF"]
# Police par défaut
try:
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 24)
except:
font = ImageFont.load_default()
for i, detection in enumerate(detections):
box = detection['box']
label = detection['label']
score = detection['score']
x1, y1 = box['xmin'], box['ymin']
x2, y2 = box['xmax'], box['ymax']
color = colors[i % len(colors)]
# Boîte très visible
draw.rectangle([x1, y1, x2, y2], outline=color, width=5)
# Texte avec fond
text = f"{label} {score:.2f}"
bbox = draw.textbbox((x1, y1-35), text, font=font)
draw.rectangle([bbox[0]-5, bbox[1]-5, bbox[2]+5, bbox[3]+5], fill=color)
draw.text((x1, y1-35), text, fill="white", font=font)
return img_copy
# Interface avec activation webcam forcée
demo = gr.Interface(
fn=process_webcam,
inputs=[
gr.Image(
sources=["webcam"],
streaming=True,
type="pil",
show_download_button=False,
interactive=True
),
gr.Dropdown(
choices=list(REALTIME_MODELS.keys()),
value="YOLOS (tiny-sized) model",
label="Modèle"
),
gr.Slider(0.1, 1.0, 0.1, step=0.1, label="Confiance")
],
outputs=gr.Image(streaming=True, type="pil", show_download_button=False),
live=True,
title="🎥 Détection Live",
description="🚨 IMPORTANT: Activez la webcam en cliquant sur l'icône caméra dans la zone Image",
flagging_mode="never"
)
if __name__ == "__main__":
demo.launch()
|